This is the official repo for TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset.

Overview

TransFill-Reference-Inpainting

This is the official repo for TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations (Yuqian Zhou, Connelly Barnes, Eli Shechtman, Sohrab Amirghodsi) at CVPR'21. According to some confidential reasons, we are not planning to release the training/testing codes and models. Online-demo will be public once we set up the server. However, we release the testing dataset for comparsion, and the scripts to prepare the training dataset.

[Paper] | [Project] | [Demo Video]

Introduction

Applications of TransFill: Photo Content Swap, Object Removal, Color Adjustment.

Image inpainting is the task of plausibly restoring missing pixels within a hole region that is to be removed from a target image. Most existing technologies exploit patch similarities within the image, or leverage large-scale training data to fill the hole using learned semantic and texture information. However, due to the ill-posed nature of the inpainting task, such methods struggle to complete larger holes containing complicated scenes. In this paper, we propose TransFill, a multi-homography transformed fusion method to fill the hole by referring to another source image that shares scene contents with the target image. We first align the source image to the target image by estimating multiple homographies guided by different depth levels. We then learn to adjust the color and apply a pixel-level warping to each homography-warped source image to make it more consistent with the target. Finally, a pixel-level fusion module is learned to selectively merge the different proposals. Our method achieves state-of-the-art performance on pairs of images across a variety of wide baselines and color differences, and generalizes to user-provided image pairs.

Download and Prepare RealEstate10K

We prepare the script of downloading and extracting paired frames from RealEstate10K. First, go to the RealEstate10K official website to download the .txt files. Then unzip it and put the folder into the data folder.

Run our script to download the video samples and extract paired frames with frame difference (stride) 10, 20 and 30.

python download_realestate10k.py \
--txt_dir ./data/RealEstate10K/train \
--out_dir ./RealEstate10K_frames/train \
--dataset_dir ./RealEstate10K_pair/train \
--sample_num 10

Choose the sample number to download limited number of samples (say 100 videos). You may need to install youtube-dl package or VPNs (in Mainland China) to download YouTube videos. Google also has some limitations of downloading amount, so I did not use multi-thread to increase the downloading speed on purpose. The process is fairly long, so I suggest downloading a subset of videos to extract samples first, and gradually extending it to download the whole dataset. Any other downloading issues, please inquire the original provider of RealEstate10K.

Download Testing Data

We shared the testing images in the paper, including the 'Small Set' containing 300 pairs of images from RealEstate10K, and a 'Real Set' containing 100+ challenging paired images from users. The data can be downloaded from the Google Drive.

To reproduce the results in the Table 1 of the paper, download and unzip the 'Small Set' into data folder, and run

python compute_metrics.py

The script will compare the images generated by TransFill with the ground truth images in the target folder, and return PSNR, SSIM and LPIPS score.

In the 'Real Set', ProFill and TransFill results are shared for the researchers to compare. Note that there are some failure cases within the folder, which shows the room for future works to improve TransFill.

Test on Your Own Data

We plan to set up the online demo server in the near future. But before we finish that, if you are really eager for a comparsion of the results for research purpose, feel free to send the testing data in the format of 'target', 'source', 'hole' folders to [email protected]. The resolution has better be smaller than 1K x 1K, otherwise we have to resize the image to avoid memory issues. To make fully use of the advantages of TransFill, we suggest the hole to be large enough by including more background contents of the target image.

We won't keep your data and will return the testing results to you within 2 working days.

Citation

If you think this repo and the manuscript helpful, please consider citing us.

@inproceedings{zhou2021transfill,
  title={TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations},
  author={Zhou, Yuqian and Barnes, Connelly and Shechtman, Eli and Amirghodsi, Sohrab},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={2266--2276},
  year={2021}
}

Acknowledgements

This project is conducted when the author interned at Adobe Photoshop and Adobe Research.

Owner
Yuqian Zhou
Ph.D of Beckman Institute, UIUC Mphil of ECE in HKUST.
Yuqian Zhou
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"

The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud

0 Oct 28, 2021
Implementation for Panoptic-PolarNet (CVPR 2021)

Panoptic-PolarNet This is the official implementation of Panoptic-PolarNet. [ArXiv paper] Introduction Panoptic-PolarNet is a fast and robust LiDAR po

Zixiang Zhou 126 Jan 01, 2023
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022