unofficial pytorch implementation of RefineGAN

Overview

RefineGAN

unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpack can be found at https://github.com/tmquan/RefineGAN

To Do

  • run the original tensorpack code (sorry, can't run tensorpack on my GPU)
  • pytorch implementation and experiments on brain images with radial mask
  • bug fixed. the mean psnr of zero-filled image is not exactly the same as the value in original paper, although the model improvement is similar
  • experiments on different masks

Install

python>=3.7.11 is required with all requirements.txt installed including pytorch>=1.10.0

git clone https://github.com/hellopipu/RefineGAN.git
cd RefineGAN
pip install -r requirements.txt

How to use

for training:

cd run_sh
sh train.sh

the model will be saved in folder weight, tensorboard information will be saved in folder log. You can change the arguments in script such as --mask_type and --sampling_rate for different experiment settings.

for tensorboard:

check the training curves while training

tensorboard --logdir log

the training info of my experiments is already in log folder

for testing:

test after training, or you can download my trained model weights from google drive.

cd run_sh
sh test.sh

for visualization:

cd run_sh
sh visualize.sh

training curves

sampling rates : 10%(light orange), 20%(dark blue), 30%(dark orange), 40%(light blue). You can check more loss curves of my experiments using tensorboard.

loss_G_loss_total loss_recon_img_Aa

PSNR on training set over 500 epochs, compared with results shown in original paper.

my_train_psnr paper_train_psnr

Test results

mean PSNR on validation dataset with radial mask of different sampling rates, batch_size is set as 4;

model 10% 20% 30% 40%
zero-filled 22.296 25.806 28.997 31.699
RefineGAN 32.705 36.734 39.961 42.903

Test cases visualization

rate from left to right: mask, zero-filled, prediction and ground truth error (zero-filled) and error (prediction)
10%
20%
30%
40%

Notes on RefineGAN

  • data processing before training : complex value represents in 2-channel , each channel rescale to [-1,1]; accordingly the last layer of generator is tanh()
  • Generator uses residual learning for reconstruction task
  • Generator is a cascade of two U-net, the U-net doesn't do concatenation but addition when combining the enc and dec features.
  • each U-net is followed by a Data-consistency (DC) module, although the paper doesn't mention it.
  • the last layer of generator is tanh layer on two-channel output, so when we revert output to original pixel scale and calculate abs, the pixel value may exceed 255; we need to do clipping while calculating psnr
  • while training, we get two random image samples A, B for each iteration, RefineGAN calculates a large amount of losses (it may be redundant) including reconstruction loss on different phases of generator output in both image domain and frequency domain, total variantion loss and WGAN loss
  • one special loss is D_loss_AB, D is trained to only distinguish from real samples and fake samples, so D should not only work for (real A, fake A) or (real B, fake B), but also work for (real A, fake B) input
  • WGAN-gp may be used to improve the performance
  • small batch size MAY BE better. In my experiment, batch_size=4 is better than batch_size=16

I will appreciate if you can find any implementation mistakes in codes.

Owner
xinby17
research interest: Medical Image Analysis, Computer Vision
xinby17
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
Implementation for Panoptic-PolarNet (CVPR 2021)

Panoptic-PolarNet This is the official implementation of Panoptic-PolarNet. [ArXiv paper] Introduction Panoptic-PolarNet is a fast and robust LiDAR po

Zixiang Zhou 126 Jan 01, 2023
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022