Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.

Overview

An Empirical Investigation of 3D Anomaly Detection and Segmentation

Project | Paper

PWC

PWC

PWC

Official PyTorch Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.


An Empirical Investigation of 3D Anomaly Detection and Segmentation
Eliahu Horwitz, Yedid Hoshen
https://arxiv.org/abs/2203.05550

Abstract: Anomaly detection and segmentation (AD&S) in images has made tremendous progress in recent years while 3D information has often been ignored. The objective of this paper is to further understand the benefit and role of 3D as apposed to color in image anomaly detection. Our study begins by presenting a surprising finding: standard color-only anomaly segmentation methods, when applied to 3D datasets, significantly outperform all current methods. On the other hand, we observe that color-only methods are insufficient for images containing geometric anomalies where shape cannot be unambiguously inferred from 2D. This suggests that better 3D methods are needed. We investigate different representations for 3D anomaly detection and discover that hand-crafted orientation-invariant representations are unreasonably effective on this task. We uncover a simple 3D-only method that outperforms all recent approaches while not using deep learning, external pretraining datasets or color information. As the 3D-only method cannot detect color and texture anomalies, we combine it with 2D color features, granting us the best current results by a large margin (pixel ROCAUC: 99.2%, PRO: 95.9% on MVTec 3D-AD). We conclude by discussing future challenges for 3D anomaly detection and segmentation.

Getting Started

Setup

  1. Clone the repo:
git clone https://github.com/eliahuhorwitz/3D-ADS.git
cd 3D-ADS
  1. Create a new environment and install the libraries:
python3.7 -m venv 3d_ads_venv
source 3d_ads_venv/bin/activate
pip install -r requirements.txt
  1. Download and extract the dataset
mkdir datasets && cd datasets
mkdir mvtec3d && cd mvtec3d
wget https://www.mydrive.ch/shares/45920/dd1eb345346df066c63b5c95676b961b/download/428824485-1643285832/mvtec_3d_anomaly_detection.tar.xz
tar -xvf mvtec_3d_anomaly_detection.tar.xz


Training

We provide the implementations for 7 methods investigated in the paper. These are:

  • RGB iNet
  • Depth iNet
  • Raw
  • HoG
  • SIFT
  • FPFH
  • RGB + FPFH

To run all methods on all 10 classes and save the PRO, Image ROCAUC, Pixel ROCAUC results to markdown tables run

python3 main.py

To change which classes are used, see mvtec3d_classes located at data/mvtec3d.py.
To change which methods are used, see the PatchCore constructor located at patchcore_runner.py and the METHOD_NAMES variable located at main.py.

Note: The results below are of the raw dataset, see the preprocessing section for the preprocessing code and results (as seen in the paper). Note: The pixel-wise metrics benefit from preprocessing. As such, the unprocessed results are slightly below the ones reported in the paper.

AU PRO Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.898 0.948 0.927 0.872 0.927 0.555 0.902 0.931 0.903 0.899 0.876
Depth iNet 0.701 0.544 0.791 0.835 0.531 0.100 0.800 0.549 0.827 0.185 0.586
Raw 0.040 0.047 0.433 0.080 0.283 0.099 0.035 0.168 0.631 0.093 0.191
HoG 0.518 0.609 0.857 0.342 0.667 0.340 0.476 0.893 0.700 0.739 0.614
SIFT 0.894 0.722 0.963 0.871 0.926 0.613 0.870 0.973 0.958 0.873 0.866
FPFH 0.972 0.849 0.981 0.939 0.963 0.693 0.975 0.981 0.980 0.949 0.928
RGB + FPFH 0.976 0.967 0.979 0.974 0.971 0.884 0.976 0.981 0.959 0.971 0.964

Image ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.854 0.840 0.824 0.687 0.974 0.716 0.713 0.593 0.920 0.724 0.785
Depth iNet 0.624 0.683 0.676 0.838 0.608 0.558 0.567 0.496 0.699 0.619 0.637
Raw 0.578 0.732 0.444 0.798 0.579 0.537 0.347 0.306 0.439 0.517 0.528
HoG 0.560 0.615 0.676 0.491 0.598 0.489 0.542 0.553 0.655 0.423 0.560
SIFT 0.696 0.553 0.824 0.696 0.795 0.773 0.573 0.746 0.936 0.553 0.714
FPFH 0.820 0.533 0.877 0.769 0.718 0.574 0.774 0.895 0.990 0.582 0.753
RGB + FPFH 0.938 0.765 0.972 0.888 0.960 0.664 0.904 0.929 0.982 0.726 0.873

Pixel ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.983 0.984 0.980 0.974 0.985 0.836 0.976 0.982 0.989 0.975 0.966
Depth iNet 0.941 0.759 0.933 0.946 0.829 0.518 0.939 0.743 0.974 0.632 0.821
Raw 0.404 0.306 0.772 0.457 0.641 0.478 0.354 0.602 0.905 0.558 0.548
HoG 0.782 0.846 0.965 0.684 0.848 0.741 0.779 0.973 0.926 0.903 0.845
SIFT 0.974 0.862 0.993 0.952 0.980 0.862 0.955 0.996 0.993 0.971 0.954
FPFH 0.995 0.955 0.998 0.971 0.993 0.911 0.995 0.999 0.998 0.988 0.980
RGB + FPFH 0.996 0.991 0.997 0.995 0.995 0.972 0.996 0.998 0.995 0.994 0.993



Preprocessing

As mentioned in the paper, the results reported use the preprocessed dataset.
While this preprocessing helps in cases where depth images are used, when using the point cloud the results are less pronounced.
It may take a few hours to run the preprocessing. Results for the preprocessed dataset are reported below.

To run the preprocessing

python3 utils/preprocessing.py datasets/mvtec3d/

Note: the preprocessing is performed inplace (i.e. overriding the original dataset)

Preprocessed AU PRO Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.902 0.948 0.929 0.873 0.891 0.570 0.903 0.933 0.909 0.905 0.876
Depth iNet 0.763 0.676 0.884 0.883 0.864 0.322 0.881 0.840 0.844 0.634 0.759
Raw 0.402 0.314 0.639 0.498 0.251 0.259 0.527 0.531 0.808 0.215 0.444
HoG 0.712 0.761 0.932 0.487 0.833 0.520 0.743 0.949 0.916 0.858 0.771
SIFT 0.944 0.845 0.975 0.894 0.909 0.733 0.946 0.981 0.953 0.928 0.911
FPFH 0.974 0.878 0.982 0.908 0.892 0.730 0.977 0.982 0.956 0.962 0.924
RGB + FPFH 0.976 0.968 0.979 0.972 0.932 0.884 0.975 0.981 0.950 0.972 0.959

Preprocessed Image ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.875 0.880 0.777 0.705 0.938 0.720 0.718 0.615 0.859 0.681 0.777
Depth iNet 0.690 0.597 0.753 0.862 0.881 0.590 0.597 0.598 0.791 0.577 0.694
Raw 0.627 0.507 0.600 0.654 0.573 0.524 0.532 0.612 0.412 0.678 0.572
HoG 0.487 0.587 0.691 0.545 0.643 0.596 0.516 0.584 0.507 0.430 0.559
SIFT 0.722 0.640 0.892 0.762 0.829 0.678 0.623 0.754 0.767 0.603 0.727
FPFH 0.825 0.534 0.952 0.783 0.883 0.581 0.758 0.889 0.929 0.656 0.779
RGB + FPFH 0.923 0.770 0.967 0.905 0.928 0.657 0.913 0.915 0.921 0.881 0.878

Preprocessed Pixel ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.983 0.984 0.98 0.974 0.973 0.851 0.976 0.983 0.987 0.977 0.967
Depth iNet 0.957 0.901 0.966 0.970 0.967 0.771 0.971 0.949 0.977 0.891 0.932
Raw 0.803 0.750 0.849 0.801 0.610 0.696 0.830 0.772 0.951 0.670 0.773
HoG 0.911 0.933 0.985 0.823 0.936 0.862 0.923 0.987 0.980 0.955 0.930
SIFT 0.986 0.957 0.996 0.952 0.967 0.921 0.986 0.998 0.994 0.983 0.974
FPFH 0.995 0.965 0.999 0.947 0.966 0.928 0.996 0.999 0.996 0.991 0.978
RGB + FPFH 0.996 0.992 0.997 0.994 0.981 0.973 0.996 0.998 0.994 0.995 0.992



Citation

If you find this repository useful for your research, please use the following.

@misc{2203.05550,
Author = {Eliahu Horwitz and Yedid Hoshen},
Title = {An Empirical Investigation of 3D Anomaly Detection and Segmentation},
Year = {2022},
Eprint = {arXiv:2203.05550},

Acknowledgments

Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022