Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.

Overview

An Empirical Investigation of 3D Anomaly Detection and Segmentation

Project | Paper

PWC

PWC

PWC

Official PyTorch Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.


An Empirical Investigation of 3D Anomaly Detection and Segmentation
Eliahu Horwitz, Yedid Hoshen
https://arxiv.org/abs/2203.05550

Abstract: Anomaly detection and segmentation (AD&S) in images has made tremendous progress in recent years while 3D information has often been ignored. The objective of this paper is to further understand the benefit and role of 3D as apposed to color in image anomaly detection. Our study begins by presenting a surprising finding: standard color-only anomaly segmentation methods, when applied to 3D datasets, significantly outperform all current methods. On the other hand, we observe that color-only methods are insufficient for images containing geometric anomalies where shape cannot be unambiguously inferred from 2D. This suggests that better 3D methods are needed. We investigate different representations for 3D anomaly detection and discover that hand-crafted orientation-invariant representations are unreasonably effective on this task. We uncover a simple 3D-only method that outperforms all recent approaches while not using deep learning, external pretraining datasets or color information. As the 3D-only method cannot detect color and texture anomalies, we combine it with 2D color features, granting us the best current results by a large margin (pixel ROCAUC: 99.2%, PRO: 95.9% on MVTec 3D-AD). We conclude by discussing future challenges for 3D anomaly detection and segmentation.

Getting Started

Setup

  1. Clone the repo:
git clone https://github.com/eliahuhorwitz/3D-ADS.git
cd 3D-ADS
  1. Create a new environment and install the libraries:
python3.7 -m venv 3d_ads_venv
source 3d_ads_venv/bin/activate
pip install -r requirements.txt
  1. Download and extract the dataset
mkdir datasets && cd datasets
mkdir mvtec3d && cd mvtec3d
wget https://www.mydrive.ch/shares/45920/dd1eb345346df066c63b5c95676b961b/download/428824485-1643285832/mvtec_3d_anomaly_detection.tar.xz
tar -xvf mvtec_3d_anomaly_detection.tar.xz


Training

We provide the implementations for 7 methods investigated in the paper. These are:

  • RGB iNet
  • Depth iNet
  • Raw
  • HoG
  • SIFT
  • FPFH
  • RGB + FPFH

To run all methods on all 10 classes and save the PRO, Image ROCAUC, Pixel ROCAUC results to markdown tables run

python3 main.py

To change which classes are used, see mvtec3d_classes located at data/mvtec3d.py.
To change which methods are used, see the PatchCore constructor located at patchcore_runner.py and the METHOD_NAMES variable located at main.py.

Note: The results below are of the raw dataset, see the preprocessing section for the preprocessing code and results (as seen in the paper). Note: The pixel-wise metrics benefit from preprocessing. As such, the unprocessed results are slightly below the ones reported in the paper.

AU PRO Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.898 0.948 0.927 0.872 0.927 0.555 0.902 0.931 0.903 0.899 0.876
Depth iNet 0.701 0.544 0.791 0.835 0.531 0.100 0.800 0.549 0.827 0.185 0.586
Raw 0.040 0.047 0.433 0.080 0.283 0.099 0.035 0.168 0.631 0.093 0.191
HoG 0.518 0.609 0.857 0.342 0.667 0.340 0.476 0.893 0.700 0.739 0.614
SIFT 0.894 0.722 0.963 0.871 0.926 0.613 0.870 0.973 0.958 0.873 0.866
FPFH 0.972 0.849 0.981 0.939 0.963 0.693 0.975 0.981 0.980 0.949 0.928
RGB + FPFH 0.976 0.967 0.979 0.974 0.971 0.884 0.976 0.981 0.959 0.971 0.964

Image ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.854 0.840 0.824 0.687 0.974 0.716 0.713 0.593 0.920 0.724 0.785
Depth iNet 0.624 0.683 0.676 0.838 0.608 0.558 0.567 0.496 0.699 0.619 0.637
Raw 0.578 0.732 0.444 0.798 0.579 0.537 0.347 0.306 0.439 0.517 0.528
HoG 0.560 0.615 0.676 0.491 0.598 0.489 0.542 0.553 0.655 0.423 0.560
SIFT 0.696 0.553 0.824 0.696 0.795 0.773 0.573 0.746 0.936 0.553 0.714
FPFH 0.820 0.533 0.877 0.769 0.718 0.574 0.774 0.895 0.990 0.582 0.753
RGB + FPFH 0.938 0.765 0.972 0.888 0.960 0.664 0.904 0.929 0.982 0.726 0.873

Pixel ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.983 0.984 0.980 0.974 0.985 0.836 0.976 0.982 0.989 0.975 0.966
Depth iNet 0.941 0.759 0.933 0.946 0.829 0.518 0.939 0.743 0.974 0.632 0.821
Raw 0.404 0.306 0.772 0.457 0.641 0.478 0.354 0.602 0.905 0.558 0.548
HoG 0.782 0.846 0.965 0.684 0.848 0.741 0.779 0.973 0.926 0.903 0.845
SIFT 0.974 0.862 0.993 0.952 0.980 0.862 0.955 0.996 0.993 0.971 0.954
FPFH 0.995 0.955 0.998 0.971 0.993 0.911 0.995 0.999 0.998 0.988 0.980
RGB + FPFH 0.996 0.991 0.997 0.995 0.995 0.972 0.996 0.998 0.995 0.994 0.993



Preprocessing

As mentioned in the paper, the results reported use the preprocessed dataset.
While this preprocessing helps in cases where depth images are used, when using the point cloud the results are less pronounced.
It may take a few hours to run the preprocessing. Results for the preprocessed dataset are reported below.

To run the preprocessing

python3 utils/preprocessing.py datasets/mvtec3d/

Note: the preprocessing is performed inplace (i.e. overriding the original dataset)

Preprocessed AU PRO Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.902 0.948 0.929 0.873 0.891 0.570 0.903 0.933 0.909 0.905 0.876
Depth iNet 0.763 0.676 0.884 0.883 0.864 0.322 0.881 0.840 0.844 0.634 0.759
Raw 0.402 0.314 0.639 0.498 0.251 0.259 0.527 0.531 0.808 0.215 0.444
HoG 0.712 0.761 0.932 0.487 0.833 0.520 0.743 0.949 0.916 0.858 0.771
SIFT 0.944 0.845 0.975 0.894 0.909 0.733 0.946 0.981 0.953 0.928 0.911
FPFH 0.974 0.878 0.982 0.908 0.892 0.730 0.977 0.982 0.956 0.962 0.924
RGB + FPFH 0.976 0.968 0.979 0.972 0.932 0.884 0.975 0.981 0.950 0.972 0.959

Preprocessed Image ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.875 0.880 0.777 0.705 0.938 0.720 0.718 0.615 0.859 0.681 0.777
Depth iNet 0.690 0.597 0.753 0.862 0.881 0.590 0.597 0.598 0.791 0.577 0.694
Raw 0.627 0.507 0.600 0.654 0.573 0.524 0.532 0.612 0.412 0.678 0.572
HoG 0.487 0.587 0.691 0.545 0.643 0.596 0.516 0.584 0.507 0.430 0.559
SIFT 0.722 0.640 0.892 0.762 0.829 0.678 0.623 0.754 0.767 0.603 0.727
FPFH 0.825 0.534 0.952 0.783 0.883 0.581 0.758 0.889 0.929 0.656 0.779
RGB + FPFH 0.923 0.770 0.967 0.905 0.928 0.657 0.913 0.915 0.921 0.881 0.878

Preprocessed Pixel ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.983 0.984 0.98 0.974 0.973 0.851 0.976 0.983 0.987 0.977 0.967
Depth iNet 0.957 0.901 0.966 0.970 0.967 0.771 0.971 0.949 0.977 0.891 0.932
Raw 0.803 0.750 0.849 0.801 0.610 0.696 0.830 0.772 0.951 0.670 0.773
HoG 0.911 0.933 0.985 0.823 0.936 0.862 0.923 0.987 0.980 0.955 0.930
SIFT 0.986 0.957 0.996 0.952 0.967 0.921 0.986 0.998 0.994 0.983 0.974
FPFH 0.995 0.965 0.999 0.947 0.966 0.928 0.996 0.999 0.996 0.991 0.978
RGB + FPFH 0.996 0.992 0.997 0.994 0.981 0.973 0.996 0.998 0.994 0.995 0.992



Citation

If you find this repository useful for your research, please use the following.

@misc{2203.05550,
Author = {Eliahu Horwitz and Yedid Hoshen},
Title = {An Empirical Investigation of 3D Anomaly Detection and Segmentation},
Year = {2022},
Eprint = {arXiv:2203.05550},

Acknowledgments

The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022