PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Related tags

Deep Learningscrl
Overview

KakaoBrain pytorch pytorch

Spatially Consistent Representation Learning (CVPR'21)

Abstract

SCRL is a self-supervised learning method that allows you to obtain a spatially consistent dense representation, especially useful for localization tasks such as object detection and segmentation. You might be able to improve your own localization task by simply initializing the backbone model with those parameters trained using our method. Please refer to the paper for more details.

Requirements

We have tested the code on the following environments:

  • Python 3.7.7 / Pytorch 1.6.0 / torchvision 0.7.0 / CUDA 10.1 / Ubuntu 18.04
  • Python 3.8.3 / Pytorch 1.7.1 / torchvision 0.8.2 / CUDA 11.1 / Ubuntu 18.04

Run the following command to install dependencies:

pip install -r requirements.txt

Configuration

The config directory contains predefined YAML configuration files for different learning methods and schedules.

There are two alternative ways to change training configuration:

  • Change the value of the field of interest directly in config/*.yaml files.
  • Pass the value as a command argument to main.py with the name that represents the field's hierarchy using the delimiter /.

Note that the values given by the command argument take precedence over the ones stored in the YAML file.

Refer to the Dataset subsection below for an example.

Model

We officially support ResNet-50 and ResNet-101 backbones. Note that all the hyperparameters have been tuned based on ResNet-50.

Dataset

Currently, only ImageNet dataset is supported. You must specify the dataset path in one of the following ways:

# (option 1) set field `dataset.root` in the YAML configuration file.
data:
  root: your_own_path
  ...
# (option 2) pass `--dataset/root` as an argument of the shell command.
$ python main.py --data/root your_own_path ...

How to Run

Overview

The code consists of two main parts: self-supervised pre-training(upstream) and linear evaluation protocol(downstream). After the pre-training is done, the evaluation protocol is automatically run by the default configurations. Note that, for simplicity, this code does not hold out validation set from train set as in BYOL paper. Although this may not be a rigorous implementation, training the linear classifier itself is not in our main interest here and the protocol still does its job well enough as an evaluation metric. Also note that the protocol may not be exactly the same with the details in other literatures in terms of batch size and learning rate schedule.

Resource & Batchsize

We recommend you run the code in a multi-node environment in order to reproduce the results reported in the paper. We used 4 V100 x 8 nodes = 32 GPUs for training. Under this circumstance, our upstream batch size is 8192 and downstream batch size is 4096. When the number of GPUs dwindled to half, we observed performance degradation. Although BYOL-like methods do not use negative examples in an explicit way, they can still suffer performance drops when their batch size is reduced, as illustrated in Figure 3 in BYOL paper.

Single-node Training

If your YAML configuration file is ./confing/scrl_200ep.yaml, run the command as follows:

$ python main.py --config config/scrl_200_ep.yaml

Multi-node Training

To train a single model with 2 nodes, for instance, run the commands below in sequence:

# on the machine #0
$ python main.py --config config/scrl_200_ep.yaml \
                 --dist_url tcp://{machine_0_ip}:{available_port} \
                 --num_machines 2 \
                 --machine_rank 0
# on the machine #1
$ python main.py --config config/scrl_200_ep.yaml \
                 --dist_url tcp://{machine_1_ip}:{available_port} \
                 --num_machines 2 \
                 --machine_rank 1

If IP address and port number are not known in advance, you can first run the command with --dist_url=auto in the master node. Then check the IP address and available port number that are printed on the command line, to which you should refer to launch the other nodes.

Linear Evaluation Only

You can also run the protocol using any given checkpoint on a stand-alone basis. You can evaluate the latest checkpoint anytime after the very first checkpoint has been dumped. Refer to the following command:

$ python main.py --config config/scrl_200ep.yaml --train/enabled=False --load_dir ...

Saving & Loading Checkpoints

Saved Filenames

  • save_dir will be automatically determined(with sequential number suffixes) unless otherwise designated.
  • Model's checkpoints are saved in ./{save_dir}/checkpoint_{epoch}.pth.
  • Symlinks of the last checkpoints are saved in ./{save_dir}/checkpoint_last.pth.

Automatic Loading

  • SCRLTraniner will automatically load checkpoint_last.pth if it exists in save_dir.
  • By default, save_dir is identical to load_dir. However, you can also set load_dir seperately.

Results

Method Epoch Linear Eval (Acc.) COCO BBox (AP) COCO Segm (AP) Checkpoint
Random -- --  /   --   29.77 / 30.95 28.70 --
IN-sup. 90 --  /  74.3 38.52 / 39.00 35.44 --
BYOL 200 72.90 / 73.14 38.35 / 38.86 35.96 download
BYOL 1000 74.47 / 74.51 40.10 / 40.19 37.16 download
SCRL 200 66.78 / 68.27 40.49 / 41.02 37.50 download
SCRL 1000 70.67 / 70.66 40.92 / 41.40 37.92 download
  • Epoch: self-supervised pre-training epochs
  • Linear Eval(linear evaluation): online / offline
  • COCO Bbox(Object Detection): Faster R-CNN w.FPN / Mask R-CNN w.FPN
  • COCO Segm(Instance Segmentation): Mask R-CNN w.FPN

On/offline Linear Evaluation

The online evaluation is done with a linear classifier attached to the top of the backbone, which is trained simultaneously during pre-training under its own objective but does NOT backpropagate the gradients to the main model. This facilitates monitoring of the learning progress while there is no target performance measure for self-supervised learning. The offline evaluation refers to the commonly known standard protocol.

COCO Localization Tasks

As you can see in the table, our method significantly boosts the performance of the localization downstream tasks. Note that the values in the table can be slightly different from the paper because of different random seeds. For the COCO localization tasks, we used Detectron2 repository publicly available, which is not included in this code. We simply initialized the ResNet-50 backbone with pre-trained parameters by our method and finetuned it under the downstream objective. Note that we used synchronized BN for all the configurable layers and retained the default hyperparameters for everything else including the training schedule(x1).

Downloading Pretrained Checkpoints

You can download the backbone checkpoints via those links in the table. To load them in our code and run the linear evaluation, change the filename to checkpoint_last.pth (or make symlink) and pass the parent directory path to either save_dir or load_dir.

Hyperparameters

For the 1000 epoch checkpoint of SCRL, we simply used the hyperparameters adopted in the official BYOL implementation, which is different from the description in the paper, but still matches the reported performance. As described in the Appendix in the paper, there could be potential room for improvement by extensive hyperparameter search.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{roh2021scrl,
  title={Spatilly Consistent Representation Learning},
  author    = {Byungseok Roh and
               Wuhyun Shin and
               Ildoo Kim and
               Sungwoong Kim},
  booktitle = {CVPR},
  publisher = {IEEE},
  year      = {2021}
}

Contact for Issues

License

This project is licensed under the terms of the Apache License 2.0.

Copyright 2021 Kakao Brain Corp. https://www.kakaobrain.com All Rights Reserved.

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022