Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Overview

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision

https://arxiv.org/abs/2003.00393

Abstract

Active learning (AL) aims to minimize labeling efforts for data-demanding deep neural networks (DNNs) by selecting the most representative data points for annotation. However, currently used methods are ill-equipped to deal with biased data. The main motivation of this paper is to consider a realistic setting for pool-based semi-supervised AL, where the unlabeled collection of train data is biased. We theoretically derive an optimal acquisition function for AL in this setting. It can be formulated as distribution shift minimization between unlabeled train data and weakly-labeled validation dataset. To implement such acquisition function, we propose a low-complexity method for feature density matching using Fisher kernel (FK) self-supervision as well as several novel pseudo-label estimators. Our FK-based method outperforms state-of-the-art methods on MNIST, SVHN, and ImageNet classification while requiring only 1/10th of processing. The conducted experiments show at least 40% drop in labeling efforts for the biased class-imbalanced data compared to existing methods.

BibTex Citation

If you like our paper or code, please cite its CVPR2020 preprint using the following BibTex:

@article{gudovskiy2020al,
  title={Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision},
  author={Gudovskiy, Denis and Hodgkinson, Alec and Yamaguchi, Takuya and Tsukizawa, Sotaro},
  journal={arXiv:2003.00393},
  year={2020}
}

Installation

  • Install v1.1+ PyTorch by selecting your environment on the website and running the appropriate command.
  • Clone this repository: code has been tested on Python 3+.
  • Install DALI for ImageNet only: tested on v0.11.0.
  • Optionally install Kornia for MC-based pseudo-label estimation metrics. However, due to strict Python 3.6+ requirement for this lib, by default, we provide our simple rotation function. Use Kornia to experiment with other sampling strategies.

Datasets

Data and temporary files like descriptors, checkpoints and index files are saved into ./local_data/{dataset} folder. For example, MNIST scripts are located in ./mnist and its data is saved into ./local_data/MNIST folder, correspondingly. In order to get statistically significant results, we execute multiple runs of the same configuration with randomized weights and training dataset splits and save results to ./local_data/{dataset}/runN folders. We suggest to check that you have enough space for large-scale datasets.

MNIST, SVHN

Datasets will be automatically downloaded and converted to PyTorch after the first run of AL.

ImageNet

Due to large size, ImageNet has to be manually downloaded and preprocessed using these scripts.

Code Organization

  • Scripts are located in ./{dataset} folder.
  • Main parts of the framework are contained in only few files: "unsup.py", "gen_descr.py", "main_descr.py" as well as execution script "run.py".
  • Dataset loaders are located in ./{dataset}/custom_datasets and DNN models in ./{dataset}/custom_models
  • The "unsup.py" is a script to train initial model by unsupervised pretraining using rotation method and to produce all-random weights initial model.
  • The "gen_descr.py" generates descriptor database files in ./local_data/{dataset}/runN/descr.
  • The "main_descr.py" performs AL feature matching, adds new data to training dataset and retrains model with new augmented data. Its checkpoints are saved into ./local_data/{dataset}/runN/checkpoint.
  • The run.py" can read these checkpoint files and perform AL iteration with retraining.
  • The run_plot.py" generates performance curves that can be found in the paper.
  • To make confusion matrices and t-SNE plots, use extra "visualize_tsne.py" script for MNIST only.
  • VAAL code can be found in ./vaal folder, which is adopted version of official repo.

Running Active Learning Experiments

  • Install minimal required packages from requirements.txt.
  • The command interface for all methods is combined into "run.py" script. It can run multiple algorithms and data configurations.
  • The script parameters may differ depending on the dataset and, hence, it is better to use "python3 run.py --help" command.
  • First, you have to set configuration in cfg = list() according to its format and execute "run.py" script with "--initial" flag to generate initial random and unsupervised pretrained models.
  • Second, the same script should be run without "--initial".
  • Third, after all AL steps are executed, "run_plot.py" should be used to reproduce performance curves.
  • All these steps require basic understanding of the AL terminology.
  • Use the default configurations to reproduce paper results.
  • To speed up or parallelize multiple runs, use --run-start, --run-stop parameters to limit number of runs saved in ./local_data/{dataset}/runN folders. The default setting is 10 runs for MNIST, 5 for SVHN and 1 for ImageNet.
pip3 install -U -r requirements.txt
python3 run.py --gpu 0 --initial # generate initial models
python3 run.py --gpu 0 --unsupervised 0 # AL with the initial all-random parameters model
python3 run.py --gpu 0 --unsupervised 1 # AL with the initial model pretrained using unsupervised rotation method

Reference Results

MNIST

MNIST LeNet test accuracy: (a) no class imbalance, (b) 100x class imbalance, and (c) ablation study of pseudo-labeling and unsupervised pretraining (100x class imbalance). Our method decreases labeling by 40% compared to prior works for biased data.

SVHN and ImageNet

SVHN ResNet-10 test (top) and ImageNet ResNet-18 val (bottom) accuracy: (a,c) no class imbalance and (b,d) with 100x class imbalance.

MNIST Visualizations

Confusion matrix (top) and t-SNE (bottom) of MNIST test data at AL iteration b=3 with 100x class imbalance for: (a) varR with E=1, K=128, (b) R_{z,g}, S=hat{p}(y,z), L=80 (ours), and (c) R_{z,g}, S=y, L=80. Dots and balls represent correspondingly correctly and incorrectly classified images for t-SNE visualizations. The underrepresented classes {5,8,9} have on average 36% accuracy for prior work (a), while our method (b) increases their accuracy to 75%. The ablation configuration (c) shows 89% theoretical limit of our method.

Owner
Denis
Machine and Deep Learning Researcher
Denis
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
LeetCode Solutions https://t.me/tenvlad

leetcode LeetCode Solutions groupped by common patterns YouTube: https://www.youtube.com/c/vladten Telegram: https://t.me/nilinterface Problems source

Vlad Ten 158 Dec 29, 2022