Make a surveillance camera from your raspberry pi!

Overview

rpi-surveillance

Make a surveillance camera from your Raspberry Pi 4!

The surveillance is built as following: the camera records 10 seconds video and if a motion was detected - sends the video to telegram channel.

The timestamp is printed on videos, so it is better to set the correct time on your Raspberry Pi.

The motion detection works in the following way: the camera’s H.264 encoder calculates motion vector estimates while generating compressed video. Using these vectors we threshold them by --magnitude-th argument. If more than --vectors-quorum vectors thresholded - mark current frame as containing motion. If there are more than --detection-frames consecutive frames with motion - motion detected.

Tested on Raspberry Pi 4 (4 RAM) + NoIR Camera V2.

Installation

Install package

Install Python 3 requirements:

pip3 install --user -r requirements.txt

Install provided .deb package:

sudo dpkg -i <path/to/downloaded/rpi-surveillance.deb>
sudo apt install -f

Note: the installation supposes that you already enabled camera module on your Raspberry Pi.

Create telegram bot and chat

  1. Write to @BotFather in telegram and create a bot:
/start
/newbot
<name of your bot>
<username of your bot>_bot

You will get the TOKEN. Save it for future use.

  1. Create a private channel where you will receive video sequences with motion.
  2. Add created bot to the channel (rerquires only "post messages" permission).
  3. Send message test to the channel.
  4. Run /usr/lib/rpi-surveillance/get_channel_id to get the CHANNEL_ID. Save it for future use.

Usage

To launch surveillance just run rpi-surveillance with your TOKEN and CHANNEL_ID, for example:

rpi-surveillance --token 1259140266:WAaqkMycra87ECzRZwa6Z_8T9KB4N-8OPI --channel-id -1003209177928

You can set various parameters of the surveillance:

usage: rpi-surveillance [-h] [--config CONFIG] --token TOKEN --channel-id
                        CHANNEL_ID [--temp-dir TEMP_DIR] [--log-file LOG_FILE]
                        [--resolution {640x480,1280x720,1920x1080}]
                        [--fps {25,30,60}] [--rotation {0,90,180,270}]
                        [--duration DURATION] [--magnitude-th MAGNITUDE_TH]
                        [--vectors-quorum VECTORS_QUORUM]
                        [--detection-frames DETECTION_FRAMES]

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       Path to config file.
  --token TOKEN         Token for your telegram bot.
  --channel-id CHANNEL_ID
                        Telegram channel ID. If you don't have it please, send
                        a message to your channel and run /usr/lib/rpi-
                        surveillance/get_channel_id with your token.
  --temp-dir TEMP_DIR   Path to temporary directory for video saving before
                        sending to channel. Don't change it if you don't know
                        what you're doing.
  --log-file LOG_FILE   Path to log file for logging.
  --resolution {640x480,1280x720,1920x1080}
                        Camera resolution. Default - 640x480.
  --fps {25,30,60}      Frames per second. Default - 25.
  --rotation {0,90,180,270}
                        Frame rotation. Default - 0.
  --duration DURATION   Duration of videos in seconds. Default - 10.
  --magnitude-th MAGNITUDE_TH
                        Magnitude threshold for motion detection (lower - more
                        sensitive). Defaults: for 640x480 - 15, for 1280x720 -
                        40, for 1920x1080 - 65.
  --vectors-quorum VECTORS_QUORUM
                        Vectors quorum for motion detection (lower - more
                        sensitive). Defaults: for 640x480 - 10, for 1280x720 -
                        20, for 1920x1080 - 40.
  --detection-frames DETECTION_FRAMES
                        The number of consecutive frames with detected motion
                        to send an alert.

Build

Build was done using dpkg-buildpackage.

You might also like...
Make your master artistic punk avatar through machine learning world famous paintings.
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

 Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

Releases(v2.2.2)
Owner
Vladyslav
Machine learning and computer vision developer.
Vladyslav
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017

AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban

Yang Zhang 128 Oct 19, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
tmm_fast is a lightweight package to speed up optical planar multilayer thin-film device computation.

tmm_fast tmm_fast or transfer-matrix-method_fast is a lightweight package to speed up optical planar multilayer thin-film device computation. It is es

26 Dec 11, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022