From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

Related tags

Deep LearningSESNet
Overview

SESNet for remote sensing image change detection

It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection". Here, we provide the pytorch implementation of this paper.

Prerequisites

  • windows or Linux
  • PyTorch-1.4.0
  • Python 3.6
  • CPU or NVIDIA GPU

Training

You can run a demo to start training.

python train.py

The network with the highest F1 score in the validation set will be saved in the folder tmp.

testing

You can run a demo to start testing.

python test.py

The F1_score, precision, recall, IoU and OA are displayed in order. Of course, you can slightly modify the code in the test.py file to save the confusion matrix.

Prepare Datasets

download the change detection dataset

SVCD is from the paper CHANGE DETECTION IN REMOTE SENSING IMAGES USING CONDITIONAL ADVERSARIAL NETWORKS, You could download the dataset at https://drive.google.com/file/d/1GX656JqqOyBi_Ef0w65kDGVto-nHrNs9;

LEVIR-CD is from the paper A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection, You could download the dataset at https://justchenhao.github.io/LEVIR/;

Take SVCD as an example, the path list in the downloaded folder is as follows:

├SVCD:
├  ├─train
├  │  ├─A
├  │  ├─B
├  │  ├─OUT
├  ├─val
├  │  ├─A
├  │  ├─B
├  │  ├─OUT
├  ├─test
├  │  ├─A
├  │  ├─B
├  │  ├─OUT

where A contains images of pre-phase, B contains images of post-phase, and OUT contains label maps.

When using the LEVIR-CD dataset, simply change the folder name from SVCD to LEVIR. The location of the dataset can be set in dataset_dir in the file metadata.json.

cut bitemporal image pairs (LEVIR-CD)

The original image in LEVIR-CD has a size of 1024 * 1024, which will consume too much memory when training. In our paper, we cut the original image into patches of 256 * 256 size without overlapping.

When running our code, please make sure that the file path of the cut image matches ours.

Define hyperparameters

The hyperparameters and dataset paths can be set in the file metadata.json.


"augmentation":  Data Enhancements
"num_gpus":      Number of simultaneous GPUs
"num_workers":   Number of simultaneous processes

"image_chanels": Number of channels of the image (3 for RGB images)
"init_channels": Adjust the overall number of channels in the network, the default is 32
"epochs":        Number of rounds of training
"batch_size":    Number of pictures in the same batch
"learning_rate": Learning Rate
"loss_function": The loss function is specified in the file `./utils/helpers.py`
"bilinear":      Up-sampling method of decoder feature maps, `False` means deconvolution, `True` means bilinear up-sampling

"dataset_dir":   Dataset path, "../SVCD/" means that the dataset `SVCD` is in the same directory as the folder `SESNet`.

Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022