Sparse Physics-based and Interpretable Neural Networks

Related tags

Deep LearningSPINN
Overview

Sparse Physics-based and Interpretable Neural Networks for PDEs

This repository contains the code and manuscript for research done on Sparse Physics-based and Interpretable Neural Networks for PDEs. More details are available in the following publication:

  • Amuthan A. Ramabathiran and Prabhu Ramachandran^, "SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs", Journal of Computational Physics, Volume 445, pages 110600, 2021 doi:10.1016/j.jcp.2021.110600. (^ Joint first author). arXiv:2102.13037.

Installation

Running the code in this repository requires a few pre-requisites to be set up. The Python packages required are in the requirements.txt. Here are some instructions to help you set these up:

  1. Setup a suitable Python distribution, using conda or a virtualenv.

  2. Clone this repository:

    $ git clone https://github.com/nn4pde/SPINN.git
    $ cd SPINN
  1. If you use conda, run the following from your Python environment:
    $ conda env create -f environment.yml
    $ conda activate spinn
  1. If you use a virtualenv or some other Python distribution and wish to use pip:
    $ pip install -r requirements.txt

Once you install the packages you should hopefully be able to run the examples. The examples all support live-plotting of the results. Matplotlib is required for the live plotting of any of the 1D problems and Mayavi is needed for any 2D/3D problems. These are already specified in the requirements.txt and environments.yml files.

Running the code

All the problems discussed in the paper are available in the code subdirectory. The supplementary text in the paper discusses the design of the code at a very high level. You can run any of the problems as follows:

  $ cd code
  $ python ode3.py -h

And this will provide a variety of help options that you can use. You can see the results live by doing:

  $ python ode3.py --plot

These require matlplotlib.

The 2D problems also feature live plotting with Mayavi if it is installed, for example:

  $ python advection1d.py --plot

You should see the solution as well as the computational nodes. Where applicable you can see an exact solution as a wireframe.

If you have a GPU and it is configured to work with PyTorch, you can use it like so:

  $ python poisson2d_irreg_dom.py --gpu

Generating the results

All the results shown in the paper are automated using the automan package which should already be installed as part of the above installation. This will perform all the required simulations (this can take a while) and also generate all the plots for the manuscript.

To learn how to use the automation, do this:

    $ python automate.py -h

By default the simulation outputs are in the outputs directory and the final plots for the paper are in manuscript/figures.

To generate all the figures in one go, run the following (this will take a while):

    $ python automate.py

If you wish to only run a particular set of problems and see those results you can do the following:

   $ python automate.py PROBLEM

where PROBLEM can be any of the demonstrated problems. For example:

  $ python automate.py ode1 heat cavity

Will only run those three problems. Please see the help output (-h) and look at the code for more details.

By default we do not need to use a GPU for the automation but if you have one, you can edit the automate.py and set USE_GPU = True to make use of your GPU where possible.

Building the paper

Once you have generated all the figures from the automation you can easily compile the manuscript. The manuscript is written with LaTeX and if you have that installed you may do the following:

$ cd manuscript
$ latexmk spinn_manuscript.tex -pdf
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
This repository contains a CBIR system that uses swin transformer to extract image's feature.

Swin-transformer based CBIR This repository contains a CBIR(content-based image retrieval) system. Here we use Swin-transformer to extract query image

JsHou 12 Nov 17, 2022
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022