implementation for paper "ShelfNet for fast semantic segmentation"

Related tags

Deep LearningShelfNet
Overview

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation)

  • This repo contains implementation of ShelfNet-lightweight models for real-time models on Cityscapes.
  • For real-time tasks, we achieved 74.8% mIoU on Ctiyscapes dataset, with a speed of 59.2 FPS (61.7 FPS for BiSeNet at 74.7% on a GTX 1080Ti GPU).
  • For non real-time tasks, we achieved 79.0% mIoU on Cityscapes test set with ResNet34 backbone, suparssing other models (PSPNet and BiSeNet) with largers backbones with ResNet50 or Resnet 101 backbone.
  • For Non light-weight ShelfNet implementation, refer to another ShelfNet repo.
  • This branch is the result on Cityscapes experiment, for results on PASCAL, see branch pascal

This repo is based on two implementations Implementation 1 and Implementation 2. This implementation takes about 24h's training on 2 GTX 1080Ti GPU.

Results

Imagess
Cityscapes results

Link to results on Cityscapes test set

ShelfNet18-lw real-time: https://www.cityscapes-dataset.com/anonymous-results/?id=b2cc8f49fc3267c73e6bb686425016cb152c8bc34fc09ac207c81749f329dc8d
ShelfNet34-lw non real-time: https://www.cityscapes-dataset.com/anonymous-results/?id=c0a7c8a4b64a880a715632c6a28b116d239096b63b5d14f5042c8b3280a7169d

Data Preparation

Download fine labelled dataset from Cityscapes server, and decompress into ./data folder.
You might need to modify data path here and here

$ mkdir -p data
$ mv /path/to/leftImg8bit_trainvaltest.zip data
$ mv /path/to/gtFine_trainvaltest.zip data
$ cd data
$ unzip leftImg8bit_trainvaltest.zip
$ unzip gtFine_trainvaltest.zip

Two models and the pretrained weights

We provide two models, ShelfNet18 with 64 base channels for real-time semantic segmentation, and ShelfNet34 with 128 base channels for non-real-time semantic segmentation.
Pretrained weights for ShelfNet18 and ShelfNet34.

Requirements

PyTorch 1.1
python3
scikit-image
tqdm

How to run

Find the folder (cd ShelfNet18_realtime or cd ShelfNet34_non_realtime)

training

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py

evaluate on validation set (Create a folder called res, this folder is automatically created if you train the model. Put checkpoint in resfolder, and make sure the checkpoint name and dataset path match evaluate.py. Change checkpoint name to model_final.pthby default)

python evaluate.py

Running speed

test running speed of ShelfNet18-lw

python test_speed.py

You can modify the shape of input images to test running speed, by modifying here
You can test running speed of different models by modifying here
The running speed is an average of 100 single forward passes, therefore it's possible the speed varies. The code returns the mean running time by default.

Owner
Juntang Zhuang
Juntang Zhuang
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❀️

Hello 🀟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship πŸ’ πŸ–¨οΈ πŸ‘¨β€πŸ’» HackBio: https://thehackbio.com πŸ’¬ Ask us

Siddhant Sharma 7 Oct 20, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023