COCO Style Dataset Generator GUI

Overview

COCO-Style-Dataset-Generator-GUI

This is a simple GUI-based Widget based on matplotlib in Python to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes using a simple interactive User Interface. Annotation can be in terms of polygon points covering all parts of an object (see instructions in README) or it can simply be a bounding box, for which you click and drag the mouse button. Optionally, one could choose to use a pretrained Mask RCNN model to come up with initial segmentations. This shifts the work load from painstakingly annotating all the objects in every image to altering wrong predictions made by the system which maybe simpler once an efficient model is learnt.

Note: This repo only contains code to annotate every object using a single polygon figure. Support for multi-polygon objects and iscrowd=True annotations isn't available yet. Feel free to extend the repo as you wish. Also, the code uses xyxy bounding boxes while coco uses xywh; something to keep in mind if you intend to create a custom COCO dataset to plug into other models as COCO datasets.

REQUIREMENTS:

Python 3.5+ is required to run the Mask RCNN code. If only the GUI tool is used, Python2.7 or Python3.5+ can be used.

NOTE: For python2.7, OpenCV needs to be installed from source and configured to be in the environment running the code.
Before installing, please upgrade setuptools using: pip install --upgrade setuptools
For Windows users, please install Visual Studio C++ 14 or higher if necessary using this link: http://go.microsoft.com/fwlink/?LinkId=691126&fixForIE=.exe.

RUN THE SEGMENTOR GUI:

Clone the repo.

git clone https://github.com/hanskrupakar/COCO-Style-Dataset-Generator-GUI.git

Installing Dependencies:

Before running the code, install required pre-requisite python packages using pip.

If you wish to use Mask RCNN to prelabel based on a trained model, please use the environment variable MASK_RCNN="y", otherwise there's no need to include it and you could just perform the install.

Without Mask RCNN
cd COCO-Style-Dataset-Generator-GUI/
python setup.py install
With Mask RCNN
cd COCO-Style-Dataset-Generator-GUI/
MASK_RCNN="y" python3 setup.py install

Running the instance segmentation GUI without Mask RCNN pretrained predictions:

In a separate text file, list the target labels/classes line-by-line to be displayed along with the dataset for class labels. For example, look at classes/products.txt

python3 -m coco_dataset_generator.gui.segment -i background/ -c classes/products.txt

python3 -m coco_dataset_generator.gui.segment_bbox_only -i background/ -c classes/products.txt

Running the instance segmentation GUI augmented by initial Mask RCNN pretrained model predictions:

To run the particular model for the demo, download the pretrained weights from HERE!!!. Download and extract pretrained weights into the repository.

python3 -m coco_dataset_generator.gui.segment -i background/ -c classes/products.txt \
                                              -w 
   
     [--config 
    
     ]

python3 -m coco_dataset_generator.gui.segment_bbox_only -i background/ -c classes/products.txt \
                                              -w 
     
       [--config 
      
       ]

      
     
    
   

The configuration file for Mask RCNN becomes relevant when you play around with the configuration parameters that make up the network. In order to seamlessly use the repository with multiple such Mask RCNN models for different types of datasets, you could create a single config file for every project and use them as you please. The base repository has been configured to work well with the demo model provided and so any change to the parameters should be followed by generation of its corresponding config file.

HINT: Use get_json_config.py inside Mask RCNN to get config file wrt specific parameters of Mask RCNN. You could either clone Mask_RCNN, use pip install -e Mask_RCNN/ to replace the mask_rcnn installed from this repo and then get access to get_json_config.py easily or you could find where pip installs mask_rcnn and find it directly from the source.

USAGE: segment.py [-h] -i IMAGE_DIR -c CLASS_FILE [-w WEIGHTS_PATH] [-x CONFIG_PATH]

USAGE: segment_bbox_only.py [-h] -i IMAGE_FILE -c CLASSES_FILE [-j JSON_FILE] [--save_csv] [-w WEIGHTS_PATH] [-x CONFIG_PATH]

Optional Arguments
Shorthand Flag Name Description
-h --help Show this help message and exit
-i IMAGE_DIR --image_dir IMAGE_DIR Path to the image dir
-c CLASS_FILE --class_file CLASS_FILE Path to object labels
-w WEIGHTS_PATH --weights_path WEIGHTS_PATH Path to Mask RCNN checkpoint save file
-j JSON_FILE --json_file JSON_FILE Path of JSON file to append dataset to
--save_csv Choose option to save dataset as CSV file
-x CONFIG_FILE --config_file CONFIG_FILE Path of JSON file for training config; Use get_json_config script from Mask RCNN

POLYGON SEGMENTATION GUI CONTROLS:

deepmagic

In this demo, all the green patches over the objects are the rough masks generated by a pretrained Mask RCNN network.

Key-bindings/ Buttons

EDIT MODE (when a is pressed and polygon is being edited)

  'a'       toggle vertex markers on and off.
            When vertex markers are on, you can move them, delete them

  'd'       delete the vertex under point

  'i'       insert a vertex at point near the boundary of the polygon.

Left click  Use on any point on the polygon boundary and move around
            by dragging to alter shape of polygon

REGULAR MODE

Scroll Up       Zoom into image

Scroll Down     Zoom out of image

Left Click      Create a point for a polygon mask around an object

Right Click     Complete the polygon currently formed by connecting all selected points

Left Click Drag Create a bounding box rectangle from point 1 to point 2 (works only
                when there are no polygon points on screen for particular object)

  'a'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to select it for editing

  'r'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to completely remove it

BRING PREVIOUS ANNOTATIONS  Bring back the annotations from the previous image to preserve
                            similar annotations.

SUBMIT                      To be clicked after Right click completes polygon! Finalizes current
                            segmentation mask and class label picked.
                            After this, the polygon cannot be edited.

NEXT                        Save all annotations created for current file and move on to next image.

PREV                        Goto previous image to re-annotate it. This deletes the annotations
                            created for the file before the current one in order to
                            rewrite the fresh annotations.

RESET                       If when drawing the polygon using points, the polygon doesn't cover the
                            object properly, reset will let you start fresh with the current polygon.
                            This deletes all the points on the image.

The green annotation boxes from the network can be edited by pressing on the Keyboard key a when the mouse pointer is on top of a particular such mask. Once you press a, the points making up that polygon will show up and you can then edit it using the key bindings specified. Once you're done editing the polygon, press a again to finalize the edits. At this point, it will become possible to submit that particular annotation and move on to the next one.

Once the GUI tool has been used successfully and relevant txt files have been created for all annotated images, one can use create_json_file.py to create the COCO-Style JSON file.

python -m coco_dataset_generator.utils.create_json_file -i background/ -c classes/products.txt
                                        -o output.json -t jpg
USAGE: create_json_file.py [-h] -i IMAGE_DIR -o FILE_PATH -c CLASS_FILE -t TYPE
Optional Arguments
Shorthand Flag Name Description
-i IMAGE_DIR --image_dir IMAGE_DIR Path to the image dir
-o FILE_PATH --file_path FILE_PATH Path of output file
-c CLASS_FILE --class_file CLASS_FILE Path of file with output classes
-t TYPE --type TYPE Type of the image files (jpg, png etc.)

RECTANGULAR BOUNDING BOX GUI CONTROLS:

The same GUI is designed slightly differently in case of rectangular bounding box annotations with speed of annotation in mind. Thus, most keys are keyboard bindings. Most ideally, this interface is very suited to serve to track objects across video by dragging around a box of similar size. Since the save button saves multiple frame results together, the JSON file is directly created instead of txt files for each image, which means there wouldn't be a need to use create_json_file.py.

Key-bindings/ Buttons

EDIT MODE (when a is pressed and rectangle is being edited)

  'a'       toggle vertex markers on and off.  When vertex markers are on,
            you can move them, delete them

  'i'       insert rectangle in the list of final objects to save.

Left click  Use on any point on the rectangle boundary and move around by
            dragging to alter shape of rectangle

REGULAR MODE

Scroll Up       Zoom into image

Scroll Down     Zoom out of image

Left Click Drag Create a bounding box rectangle from point 1 to point 2.

  'a'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to select it for editing

  'r'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to completely remove it

  'n'           Press key to move on to next image after completing all
                rectangles in current image

  SAVE          Save all annotated objects so far

LIST OF FUNCTIONALITIES:

    FILE                            FUNCTIONALITY

cut_objects.py                  Cuts objects based on bounding box annotations using dataset.json
                                file and creates occlusion-based augmented images dataset.

create_json_file.py             Takes a directory of annotated images (use segment.py to annotate
                                into text files) and returns a COCO-style JSON file.

extract_frames.py               Takes a directory of videos and extracts all the frames of all
                                videos into a folder labeled adequately by the video name.

pascal_to_coco.py               Takes a PASCAL-style dataset directory with JPEGImages/ and
                                Annotations/ folders and uses the bounding box as masks to
                                create a COCO-style JSON file.

segment.py                      Read the instructions above.

segment_bbox_only.py            Same functionality but optimized for easier annotation of
                                bbox-only datasets.

test_*.py                       Unit tests.

visualize_dataset.py            Visualize the annotations created using the tool.

visualize_json_file.py          Visualize the dataset JSON file annotations on the entire dataset.

compute_dataset_statistics.py   Find distribution of objects in the dataset by counts.

combine_json_files.py           Combine different JSON files together into a single dataset file.

delete_images.py                Delete necessary images from the JSON dataset.

NOTE: Please use python .py -h for details on how to use each of the above files.

Owner
Hans Krupakar
Data Science | Computer Vision
Hans Krupakar
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

77 Jan 05, 2023
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022