COCO Style Dataset Generator GUI

Overview

COCO-Style-Dataset-Generator-GUI

This is a simple GUI-based Widget based on matplotlib in Python to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes using a simple interactive User Interface. Annotation can be in terms of polygon points covering all parts of an object (see instructions in README) or it can simply be a bounding box, for which you click and drag the mouse button. Optionally, one could choose to use a pretrained Mask RCNN model to come up with initial segmentations. This shifts the work load from painstakingly annotating all the objects in every image to altering wrong predictions made by the system which maybe simpler once an efficient model is learnt.

Note: This repo only contains code to annotate every object using a single polygon figure. Support for multi-polygon objects and iscrowd=True annotations isn't available yet. Feel free to extend the repo as you wish. Also, the code uses xyxy bounding boxes while coco uses xywh; something to keep in mind if you intend to create a custom COCO dataset to plug into other models as COCO datasets.

REQUIREMENTS:

Python 3.5+ is required to run the Mask RCNN code. If only the GUI tool is used, Python2.7 or Python3.5+ can be used.

NOTE: For python2.7, OpenCV needs to be installed from source and configured to be in the environment running the code.
Before installing, please upgrade setuptools using: pip install --upgrade setuptools
For Windows users, please install Visual Studio C++ 14 or higher if necessary using this link: http://go.microsoft.com/fwlink/?LinkId=691126&fixForIE=.exe.

RUN THE SEGMENTOR GUI:

Clone the repo.

git clone https://github.com/hanskrupakar/COCO-Style-Dataset-Generator-GUI.git

Installing Dependencies:

Before running the code, install required pre-requisite python packages using pip.

If you wish to use Mask RCNN to prelabel based on a trained model, please use the environment variable MASK_RCNN="y", otherwise there's no need to include it and you could just perform the install.

Without Mask RCNN
cd COCO-Style-Dataset-Generator-GUI/
python setup.py install
With Mask RCNN
cd COCO-Style-Dataset-Generator-GUI/
MASK_RCNN="y" python3 setup.py install

Running the instance segmentation GUI without Mask RCNN pretrained predictions:

In a separate text file, list the target labels/classes line-by-line to be displayed along with the dataset for class labels. For example, look at classes/products.txt

python3 -m coco_dataset_generator.gui.segment -i background/ -c classes/products.txt

python3 -m coco_dataset_generator.gui.segment_bbox_only -i background/ -c classes/products.txt

Running the instance segmentation GUI augmented by initial Mask RCNN pretrained model predictions:

To run the particular model for the demo, download the pretrained weights from HERE!!!. Download and extract pretrained weights into the repository.

python3 -m coco_dataset_generator.gui.segment -i background/ -c classes/products.txt \
                                              -w 
   
     [--config 
    
     ]

python3 -m coco_dataset_generator.gui.segment_bbox_only -i background/ -c classes/products.txt \
                                              -w 
     
       [--config 
      
       ]

      
     
    
   

The configuration file for Mask RCNN becomes relevant when you play around with the configuration parameters that make up the network. In order to seamlessly use the repository with multiple such Mask RCNN models for different types of datasets, you could create a single config file for every project and use them as you please. The base repository has been configured to work well with the demo model provided and so any change to the parameters should be followed by generation of its corresponding config file.

HINT: Use get_json_config.py inside Mask RCNN to get config file wrt specific parameters of Mask RCNN. You could either clone Mask_RCNN, use pip install -e Mask_RCNN/ to replace the mask_rcnn installed from this repo and then get access to get_json_config.py easily or you could find where pip installs mask_rcnn and find it directly from the source.

USAGE: segment.py [-h] -i IMAGE_DIR -c CLASS_FILE [-w WEIGHTS_PATH] [-x CONFIG_PATH]

USAGE: segment_bbox_only.py [-h] -i IMAGE_FILE -c CLASSES_FILE [-j JSON_FILE] [--save_csv] [-w WEIGHTS_PATH] [-x CONFIG_PATH]

Optional Arguments
Shorthand Flag Name Description
-h --help Show this help message and exit
-i IMAGE_DIR --image_dir IMAGE_DIR Path to the image dir
-c CLASS_FILE --class_file CLASS_FILE Path to object labels
-w WEIGHTS_PATH --weights_path WEIGHTS_PATH Path to Mask RCNN checkpoint save file
-j JSON_FILE --json_file JSON_FILE Path of JSON file to append dataset to
--save_csv Choose option to save dataset as CSV file
-x CONFIG_FILE --config_file CONFIG_FILE Path of JSON file for training config; Use get_json_config script from Mask RCNN

POLYGON SEGMENTATION GUI CONTROLS:

deepmagic

In this demo, all the green patches over the objects are the rough masks generated by a pretrained Mask RCNN network.

Key-bindings/ Buttons

EDIT MODE (when a is pressed and polygon is being edited)

  'a'       toggle vertex markers on and off.
            When vertex markers are on, you can move them, delete them

  'd'       delete the vertex under point

  'i'       insert a vertex at point near the boundary of the polygon.

Left click  Use on any point on the polygon boundary and move around
            by dragging to alter shape of polygon

REGULAR MODE

Scroll Up       Zoom into image

Scroll Down     Zoom out of image

Left Click      Create a point for a polygon mask around an object

Right Click     Complete the polygon currently formed by connecting all selected points

Left Click Drag Create a bounding box rectangle from point 1 to point 2 (works only
                when there are no polygon points on screen for particular object)

  'a'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to select it for editing

  'r'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to completely remove it

BRING PREVIOUS ANNOTATIONS  Bring back the annotations from the previous image to preserve
                            similar annotations.

SUBMIT                      To be clicked after Right click completes polygon! Finalizes current
                            segmentation mask and class label picked.
                            After this, the polygon cannot be edited.

NEXT                        Save all annotations created for current file and move on to next image.

PREV                        Goto previous image to re-annotate it. This deletes the annotations
                            created for the file before the current one in order to
                            rewrite the fresh annotations.

RESET                       If when drawing the polygon using points, the polygon doesn't cover the
                            object properly, reset will let you start fresh with the current polygon.
                            This deletes all the points on the image.

The green annotation boxes from the network can be edited by pressing on the Keyboard key a when the mouse pointer is on top of a particular such mask. Once you press a, the points making up that polygon will show up and you can then edit it using the key bindings specified. Once you're done editing the polygon, press a again to finalize the edits. At this point, it will become possible to submit that particular annotation and move on to the next one.

Once the GUI tool has been used successfully and relevant txt files have been created for all annotated images, one can use create_json_file.py to create the COCO-Style JSON file.

python -m coco_dataset_generator.utils.create_json_file -i background/ -c classes/products.txt
                                        -o output.json -t jpg
USAGE: create_json_file.py [-h] -i IMAGE_DIR -o FILE_PATH -c CLASS_FILE -t TYPE
Optional Arguments
Shorthand Flag Name Description
-i IMAGE_DIR --image_dir IMAGE_DIR Path to the image dir
-o FILE_PATH --file_path FILE_PATH Path of output file
-c CLASS_FILE --class_file CLASS_FILE Path of file with output classes
-t TYPE --type TYPE Type of the image files (jpg, png etc.)

RECTANGULAR BOUNDING BOX GUI CONTROLS:

The same GUI is designed slightly differently in case of rectangular bounding box annotations with speed of annotation in mind. Thus, most keys are keyboard bindings. Most ideally, this interface is very suited to serve to track objects across video by dragging around a box of similar size. Since the save button saves multiple frame results together, the JSON file is directly created instead of txt files for each image, which means there wouldn't be a need to use create_json_file.py.

Key-bindings/ Buttons

EDIT MODE (when a is pressed and rectangle is being edited)

  'a'       toggle vertex markers on and off.  When vertex markers are on,
            you can move them, delete them

  'i'       insert rectangle in the list of final objects to save.

Left click  Use on any point on the rectangle boundary and move around by
            dragging to alter shape of rectangle

REGULAR MODE

Scroll Up       Zoom into image

Scroll Down     Zoom out of image

Left Click Drag Create a bounding box rectangle from point 1 to point 2.

  'a'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to select it for editing

  'r'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to completely remove it

  'n'           Press key to move on to next image after completing all
                rectangles in current image

  SAVE          Save all annotated objects so far

LIST OF FUNCTIONALITIES:

    FILE                            FUNCTIONALITY

cut_objects.py                  Cuts objects based on bounding box annotations using dataset.json
                                file and creates occlusion-based augmented images dataset.

create_json_file.py             Takes a directory of annotated images (use segment.py to annotate
                                into text files) and returns a COCO-style JSON file.

extract_frames.py               Takes a directory of videos and extracts all the frames of all
                                videos into a folder labeled adequately by the video name.

pascal_to_coco.py               Takes a PASCAL-style dataset directory with JPEGImages/ and
                                Annotations/ folders and uses the bounding box as masks to
                                create a COCO-style JSON file.

segment.py                      Read the instructions above.

segment_bbox_only.py            Same functionality but optimized for easier annotation of
                                bbox-only datasets.

test_*.py                       Unit tests.

visualize_dataset.py            Visualize the annotations created using the tool.

visualize_json_file.py          Visualize the dataset JSON file annotations on the entire dataset.

compute_dataset_statistics.py   Find distribution of objects in the dataset by counts.

combine_json_files.py           Combine different JSON files together into a single dataset file.

delete_images.py                Delete necessary images from the JSON dataset.

NOTE: Please use python .py -h for details on how to use each of the above files.

Owner
Hans Krupakar
Data Science | Computer Vision
Hans Krupakar
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022