This repository contains tutorials for the py4DSTEM Python package

Overview
Comments
  • Binder dev

    Binder dev

    • Binder link created, currently lands in Index.ipynb
    • data loaded as part of the notebooks, running all cells on notebooks inside binder will work.
    • Added file_getter.py which takes command-line arguments, which makes extending the download to more notebooks fairly straightforward.
    • Both notebooks work, make_probe_templates.ipynb required adding some clean-up steps to avoid going over 2GB ram limit, the alternative is to split them into more separate notebooks.
    • There's a slight issue that if people don't shutdown notebooks properly or if they have multiple notebooks over, they may cause kernel panics, both notebooks peak memory usage push the 2GB limit .
    • I haven't given much attention to style or formatting currently just wanted to get something functional and working to see if works as required.
    opened by alex-rakowski 1
  • SSB tutorial notebooks with new dataset

    SSB tutorial notebooks with new dataset

    These are two new tutorial notebooks I updated. One is for single-run reconstruction, the other is for interactive mode with ipywidgets and matplotlib visualization.

    opened by PhilippPelz 0
  • Binder dev

    Binder dev

    • Binder link created, currently lands in Index.ipynb
    • data loaded as part of the notebooks, running all cells on notebooks inside binder will work.
    • Added file_getter.py which takes command-line arguments, which makes extending the download to more notebooks fairly straightforward.
    • Both notebooks work, make_probe_templates.ipynb required adding some clean-up steps to avoid going over 2GB ram limit, the alternative is to split them into more separate notebooks.
    • There's a slight issue that if people don't shutdown notebooks properly or if they have multiple notebooks over, they may cause kernel panics, both notebooks peak memory usage push the 2GB limit .
    • I haven't given much attention to style or formatting currently just wanted to get something functional and working to see if works as required.
    opened by alex-rakowski 0
  • Add simulations for dynamical scattering

    Add simulations for dynamical scattering

    I found that there is almost no proper documentation for the dynamical scattering simulation in py4DSTEM unless you read the source code (actually I couldn't find the documentation for the whole diffraction module). So I created a tutorial using NaCl as an example. Hope I have done it right.

    opened by Taimin 0
  • py4DSTEM.process.virtualimage.get_virtualimage_circ (strain mapping tutorial)

    py4DSTEM.process.virtualimage.get_virtualimage_circ (strain mapping tutorial)

    in the strain mapping tutorial, this step doesn't work !

    [12]

    Next, create a BF virtual detector using the the center beam position (qxy0, qy0)

    We will expand the BF radius slightly (+ 2 px).

    The DF virtual detector can be set to all remaining pixels.

    expand_BF = 2.0 image_BF = py4DSTEM.process.virtualimage.get_virtualimage_circ( dataset, qx0, qy0, probe_semiangle + expand_BF) image_DF = py4DSTEM.process.virtualimage.get_virtualimage_ann( dataset, qx0, qy0, probe_semiangle + expand_BF, 1e3)

    [return]

    AttributeError Traceback (most recent call last) Input In [168], in <cell line: 5>() 1 # Next, create a BF virtual detector using the the center beam position (qxy0, qy0) 2 # We will expand the BF radius slightly (+ 2 px). 3 # The DF virtual detector can be set to all remaining pixels. 4 expand_BF = 2.0 ----> 5 image_BF = py4DSTEM.process.get_virtualimage_circ( 6 dataset, 7 qx0, qy0, 8 probe_semiangle + expand_BF) 9 image_DF = py4DSTEM.process.virtualimage.get_virtualimage_ann( 10 dataset, 11 qx0, qy0, 12 probe_semiangle + expand_BF, 13 1e3)

    AttributeError: module 'py4DSTEM.process' has no attribute 'get_virtualimage_circ'

    Any tips to fix that ?

    py4DSTEM.process.virtualimage.virtualimage.get_virtualimage_circ or py4DSTEM.process.virtualimage.get_virtualimage_circ ?

    opened by lylofu 0
  • ACOM_03_Au_NP_sim.ipynb bugs

    ACOM_03_Au_NP_sim.ipynb bugs

    Running the ACOM_03 notebook as downloaded, cell 25 gives the following error:

    ---------------------------------------------------------------------------
    NameError                                 Traceback (most recent call last)
    /var/folders/ts/tq6v7mks7hvg37ys5zvs1c2w0000gn/T/ipykernel_3012/3733081456.py in <module>
         14 
         15 # Fit an ellipse to the elliptically corrected bvm
    ---> 16 qx0_corr,qy0_corr,a_corr,e_corr,theta_corr = py4DSTEM.process.calibration.fit_ellipse_1D(bvm_ellipsecorr,(qx0,qy0),(qmin,qmax))
         17 
         18 py4DSTEM.visualize.show_elliptical_fit(
    
    NameError: name 'qmin' is not defined
    

    I think someone changed qmin, qmax to be a list called qrange and never actually tested the notebook in a fresh state.

    opened by sezelt 0
  • AttributeError: module 'py4DSTEM.process' has no attribute 'diffraction'

    AttributeError: module 'py4DSTEM.process' has no attribute 'diffraction'

    When I run the "ACOM Tutorial Notebook 01", it gives a following error message.

    AttributeError: module 'py4DSTEM.process' has no attribute 'diffraction'

    version python 3.8.0 py4DSTEM 0.12.6 pywin32 302

    error

    opened by nomurayuki0503 0
Releases(v0.13.8-alpha)
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
Neural network pruning for finding a sparse computational model for controlling a biological motor task.

MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo

Olivia Thomas 0 Dec 14, 2022
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

AdaOPS An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with th

9 Oct 05, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023