COIN the currently largest dataset for comprehensive instruction video analysis.

Overview

COIN Dataset

COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e., car polishing, make French fries) related to 12 domains (i.e., vehicle, dish). All videos are collected from YouTube and annotated with an efficient toolbox.

Authors and Contributors

Yansong Tang*, Dajun Ding, Yongming Rao*, Yu Zheng*, Danyang Zhang*, Lili Zhao, Jiwen Lu*, Jie Zhou*, Yongxiang Lian*, Yao Li, Jiali Sun, Chang Liu, Dongge You, Zirun Yang, Jiaojiao Ge, Jiayun Wang*

  • *Tsinghua University
  • Meitu Inc.

Contact: [email protected]

License

You may use the codes and files for research only, including sharing and modifying the material. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Dataset and Annotation

Taxonomy

The COIN is organized in a hierarchical structure, which contains three levels: domain, task and step. The corresponding relationship can be found at taxonomy [link]. We provide the taxonomy file of COIN in csv format. Below, we show a small part of the texonomy stored in taxonomy.xlsx:

domain_target_mapping target_action_mapping
Domains Targets
... ...
Vehicle ChangeCarTire
Vehicle InstallLicensePlateFrame
... ...
Gadgets ReplaceCDDriveWithSSD
Target Id Target Label Action Id Action Label
... ... ... ...
13 ChangeCarTire 259 unscrew the screw
13 ChangeCarTire 260 jack up the car
13 ChangeCarTire 261 remove the tire
13 ChangeCarTire 262 put on the tire
13 ChangeCarTire 263 tighten the screws
... ... ... ...

We store the url of video and their annotation in JSON format, which can be accessed with the link [COIN](Project link page). The json file is similar to that of ActivityNet. Below, we show an example entry from the key field "database":

"LtRSn-ntcLY": {
			"duration": 131.0309,
			"class": "ReplaceCDDriveWithSSD",
			"video_url": "https://www.youtube.com/embed/LtRSn-ntcLY",
			"start": 56.640895694775196,
			"annotation": [
				{
					"id": "212",
					"segment": [
						60.0,
						69.0
					],
					"label": "take out the laptop CD drive"
				},
				{
					"id": "216",
					"segment": [
						71.0,
						82.0
					],
					"label": "insert the hard disk tray into the position of the CD drive"
				}
			],
			"subset": "training",
			"end": 85.714362947023,
			"recipe_type": 131
		}

From the entry, we can easily retrieve the Youtube ID, duration, ROI and procedure information of the video. The field "annotation" comprises of a list of all annotated procedures within the video. The field "class" and sub-field "id" correspond to "task" and "step" of the taxonomy respectively.

File Structure

The annotation information is saved in COIN.json.

Field Name Type Example Description
database string - Key filed of the annotation file.
- string LtRSn-ntcLY Youtube ID of the video.
duration float 56.640895694775196 Duration of the video in seconds.
class string ReplaceCDDriveWithSSD Name of the task in the video.
video_url string https://www.youtube.com/embed/LtRSn-ntcLY Url of the video.
start float 56.640895694775196 Start time of the ROI of the video.
end float 85.714362947023 End time of the ROI of the video.
subset string training or validation Subset of the video.
recipe_type int 131 ID number of the task.
annotation string - Annotation information of the video.
annotation:id int 212 ID number of the procedure.
annotation:label string take out the laptop CD drive Name of the procedure.
annotation:segment list of float (len=2) [60.0,69.0] Start and end time of the procedure.
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

Simon Boehm 183 Jan 02, 2023
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022