RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

Related tags

Deep Learningraft-mlp
Overview

RaftMLP

RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

By Yuki Tatsunami and Masato Taki (Rikkyo University)

[arxiv]

Abstract

For the past ten years, CNN has reigned supreme in the world of computer vision, but recently, Transformer has been on the rise. However, the quadratic computational cost of self-attention has become a serious problem in practice applications. There has been much research on architectures without CNN and self-attention in this context. In particular, MLP-Mixer is a simple architecture designed using MLPs and hit an accuracy comparable to the Vision Transformer. However, the only inductive bias in this architecture is the embedding of tokens. This leaves open the possibility of incorporating a non-convolutional (or non-local) inductive bias into the architecture, so we used two simple ideas to incorporate inductive bias into the MLP-Mixer while taking advantage of its ability to capture global correlations. A way is to divide the token-mixing block vertically and horizontally. Another way is to make spatial correlations denser among some channels of token-mixing. With this approach, we were able to improve the accuracy of the MLP-Mixer while reducing its parameters and computational complexity. The small model that is RaftMLP-S is comparable to the state-of-the-art global MLP-based model in terms of parameters and efficiency per calculation. In addition, we tackled the problem of fixed input image resolution for global MLP-based models by utilizing bicubic interpolation. We demonstrated that these models could be applied as the backbone of architectures for downstream tasks such as object detection. However, it did not have significant performance and mentioned the need for MLP-specific architectures for downstream tasks for global MLP-based models.

About Environment

Our base is PyTorch, Torchvision, and Ignite. We use mmdetection and mmsegmentation for object detection and semantic segmentation. We also use ClearML, AWS, etc., for experiment management.

We also use Docker for our environment, and with Docker and NVIDIA Container Toolkit installed, we can build a runtime environment at the ready.

Require

  • NVIDIA Driver
  • Docker(19.03+)
  • Docker Compose(1.28.0+)
  • NVIDIA Container Toolkit

Prepare

clearml.conf

Please copy clearml.conf.sample, you can easily create clearml.conf. Unless you have a Clear ML account, you should use the account. Next, you obtain the access key and secret key of the service. Let's write them on clearml.conf. If you don't have an AWS account, you will need one. Then, create an IAM user and an S3 bucket, and grant the IAM user a policy that allows you to read and write objects to the bucket you created. Include the access key and secret key of the IAM user you created and the region of the bucket you made in your clearml.conf.

docker-compose.yml

Please copy docker-compose.yml.sample to docker-compose.yml. Change the path/to/datasets in the volumes section to an appropriate directory where the datasets are stored. You can set device_ids on your environment. If you train semantic segmentation models or object detection models, you should set WANDB_API_KEY.

Datasets

Except for ImageNet, our codes automatically download datasets, but we recommend downloading them beforehand. Datasets need to be placed in the location set in the datasets directory in docker-compose.yml.

ImageNet1k

Please go to URL and register on the site. Then you can download ImageNet1k dataset. You should place it under path/to/datasets with the following structure.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

CIFAR10

No problem, just let the code download automatically. URL

CIFAR100

No problem, just let the code download automatically. URL

Oxford 102 Flowers

No problem, just let the code download automatically. URL

Stanford Cars

You should place it under path/to/datasets with the following structure.

│stanford_cars/
├──cars_train/
│  ├── 00001.jpg
│  ├── 00002.jpg
│  ├── ......
├──cars_test/
│  ├── 00001.jpg
│  ├── 00002.jpg
│  ├── ......
├──devkit/
│  ├── cars_meta.mat
│  ├── cars_test_annos.mat
│  ├── cars_train_annos.mat
│  ├── eval_train.m
│  ├── README.txt
│  ├── train_perfect_preds.txt
├──cars_test_annos_withlabels.matcars_test_annos_withlabels.mat

URL

iNaturalist18

You should place it under path/to/datasets with the following structure.

│i_naturalist_18/
├──train_val2018/
│  ├──Actinopterygii/
│  │  ├──2229/
│  │  │  ├── 014a31153ac74bf87f1f730480e4a27a.jpg
│  │  │  ├── 037d062cc1b8a85821449d2cdeca7749.jpg
│  │  │  ├── ......
│  │  ├── ......
│  ├── ......
├──train2018.json
├──val2018.json

URL

iNaturalist19

You should place it under path/to/datasets with the following structure.

│i_naturalist_19/
├──train_val2019/
│  ├──Amphibians/
│  │  ├──153/
│  │  │  ├── 0042d05b4ffbd5a1ce2fc56513a7777e.jpg
│  │  │  ├── 006f69e838b87cfff3d12120795c4ada.jpg
│  │  │  ├── ......
│  │  ├── ......
│  ├── ......
├──train2019.json
├──val2019.json

URL

MS COCO

You should place it under path/to/datasets with the following structure.

│coco/
├──train2017/
│  ├── 000000000009.jpg
│  ├── 000000000025.jpg
│  ├── ......
├──val2017/
│  ├── 000000000139.jpg
│  ├── 000000000285.jpg
│  ├── ......
├──annotations/
│  ├── captions_train2017.json
│  ├── captions_val2017.json
│  ├── instances_train2017.json
│  ├── instances_val2017.json
│  ├── person_keypoints_train2017.json
│  ├── person_keypoints_val2017.json

URL

ADE20K

In order for you to download the ADE20k dataset, you have to register at this site and get approved. Once downloaded the dataset, place it so that it has the following structure.

│ade/
├──ADEChallengeData2016/
│  ├──annotations/
│  │  ├──training/
│  │  │  ├── ADE_train_00000001.png
│  │  │  ├── ADE_train_00000002.png
│  │  │  ├── ......
│  │  ├──validation/
│  │  │  ├── ADE_val_00000001.png
│  │  │  ├── ADE_val_00000002.png
│  │  │  ├── ......
│  ├──images/
│  │  ├──training/
│  │  │  ├── ADE_train_00000001.jpg
│  │  │  ├── ADE_train_00000002.jpg
│  │  │  ├── ......
│  │  ├──validation/
│  │  │  ├── ADE_val_00000001.jpg
│  │  │  ├── ADE_val_00000002.jpg
│  │  │  ├── ......
│  │  ├──
│  ├──objectInfo150.txt
│  ├──sceneCategories.txt

ImageNet1k

configs/settings are available. Each of the training conducted in Subsection 4.1 can be performed in the following commands.

docker run trainer python run.py settings=imagenet-raft-mlp-cross-mlp-emb-s
docker run trainer python run.py settings=imagenet-raft-mlp-cross-mlp-emb-m
docker run trainer python run.py settings=imagenet-raft-mlp-cross-mlp-emb-l

The ablation study for channel rafts in subsection 4.2 ran the following commands.

Ablation Study

docker run trainer python run.py settings=imagenet-org-mixer
docker run trainer python run.py settings=imagenet-raft-mlp-r-1
docker run trainer python run.py settings=imagenet-raft-mlp-r-2
docker run trainer python run.py settings=imagenet-raft-mlp

The ablation study for multi-scale patch embedding in subsection 4.2 ran the following commands.

docker run trainer python run.py settings=imagenet-raft-mlp-cross-mlp-emb-m
docker run trainer python run.py settings=imagenet-raft-mlp-hierarchy-m

Transfer Learning

docker run trainer python run.py settings=finetune/cars-org-mixer.yaml
docker run trainer python run.py settings=finetune/cars-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/cars-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/cars-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/cifar10-org-mixer.yaml
docker run trainer python run.py settings=finetune/cifar10-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/cifar10-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/cifar10-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/cifar100-org-mixer.yaml
docker run trainer python run.py settings=finetune/cifar100-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/cifar100-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/cifar100-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/flowers102-org-mixer.yaml
docker run trainer python run.py settings=finetune/flowers102-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/flowers102-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/flowers102-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/inat18-org-mixer.yaml
docker run trainer python run.py settings=finetune/inat18-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/inat18-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/inat18-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/inat19-org-mixer.yaml
docker run trainer python run.py settings=finetune/inat19-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/inat19-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/inat19-raft-mlp-cross-mlp-emb-l.yaml

Object Detection

The weights already trained by ImageNet should be placed in the following path.

path/to/datasets/weights/imagenet-raft-mlp-cross-mlp-emb-s/last_model_0.pt
path/to/datasets/weights/imagenet-raft-mlp-cross-mlp-emb-l/last_model_0.pt
path/to/datasets/weights/imagenet-raft-mlp-cross-mlp-emb-m/last_model_0.pt
path/to/datasets/weights/imagenet-org-mixer/last_model_0.pt

Please execute the following commands.

docker run trainer bash ./detection.sh configs/detection/maskrcnn_org_mixer_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/maskrcnn_raftmlp_l_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/maskrcnn_raftmlp_m_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/maskrcnn_raftmlp_s_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/retinanet_org_mixer_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/retinanet_raftmlp_l_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/retinanet_raftmlp_m_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/retinanet_raftmlp_s_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8

Semantic Segmentation

As with object detection, the following should be executed after placing the weight files in advance.

docker run trainer bash ./segmentation.sh configs/segmentation/fpn_org_mixer_512x512_40k_ade20k.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./segmentation.sh configs/segmentation/fpn_raftmlp_s_512x512_40k_ade20k.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./segmentation.sh configs/segmentation/fpn_raftmlp_m_512x512_40k_ade20k.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./segmentation.sh configs/segmentation/fpn_raftmlp_l_512x512_40k_ade20k.py 8 --seed=42 --deterministic --gpus=8

Reference

@misc{tatsunami2021raftmlp,
  title={RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?},
  author={Yuki Tatsunami and Masato Taki},
  year={2021}
  eprint={2108.04384},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

License

This repository is relased under the Apache 2.0 license as douns in the LICENSE file.

Owner
Okojo
Okojo
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

Simon Boehm 183 Jan 02, 2023
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Scalable, event-driven, deep-learning-friendly backtesting library

...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on

Andrew 922 Dec 27, 2022
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 07, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022