RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

Related tags

Deep Learningraft-mlp
Overview

RaftMLP

RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

By Yuki Tatsunami and Masato Taki (Rikkyo University)

[arxiv]

Abstract

For the past ten years, CNN has reigned supreme in the world of computer vision, but recently, Transformer has been on the rise. However, the quadratic computational cost of self-attention has become a serious problem in practice applications. There has been much research on architectures without CNN and self-attention in this context. In particular, MLP-Mixer is a simple architecture designed using MLPs and hit an accuracy comparable to the Vision Transformer. However, the only inductive bias in this architecture is the embedding of tokens. This leaves open the possibility of incorporating a non-convolutional (or non-local) inductive bias into the architecture, so we used two simple ideas to incorporate inductive bias into the MLP-Mixer while taking advantage of its ability to capture global correlations. A way is to divide the token-mixing block vertically and horizontally. Another way is to make spatial correlations denser among some channels of token-mixing. With this approach, we were able to improve the accuracy of the MLP-Mixer while reducing its parameters and computational complexity. The small model that is RaftMLP-S is comparable to the state-of-the-art global MLP-based model in terms of parameters and efficiency per calculation. In addition, we tackled the problem of fixed input image resolution for global MLP-based models by utilizing bicubic interpolation. We demonstrated that these models could be applied as the backbone of architectures for downstream tasks such as object detection. However, it did not have significant performance and mentioned the need for MLP-specific architectures for downstream tasks for global MLP-based models.

About Environment

Our base is PyTorch, Torchvision, and Ignite. We use mmdetection and mmsegmentation for object detection and semantic segmentation. We also use ClearML, AWS, etc., for experiment management.

We also use Docker for our environment, and with Docker and NVIDIA Container Toolkit installed, we can build a runtime environment at the ready.

Require

  • NVIDIA Driver
  • Docker(19.03+)
  • Docker Compose(1.28.0+)
  • NVIDIA Container Toolkit

Prepare

clearml.conf

Please copy clearml.conf.sample, you can easily create clearml.conf. Unless you have a Clear ML account, you should use the account. Next, you obtain the access key and secret key of the service. Let's write them on clearml.conf. If you don't have an AWS account, you will need one. Then, create an IAM user and an S3 bucket, and grant the IAM user a policy that allows you to read and write objects to the bucket you created. Include the access key and secret key of the IAM user you created and the region of the bucket you made in your clearml.conf.

docker-compose.yml

Please copy docker-compose.yml.sample to docker-compose.yml. Change the path/to/datasets in the volumes section to an appropriate directory where the datasets are stored. You can set device_ids on your environment. If you train semantic segmentation models or object detection models, you should set WANDB_API_KEY.

Datasets

Except for ImageNet, our codes automatically download datasets, but we recommend downloading them beforehand. Datasets need to be placed in the location set in the datasets directory in docker-compose.yml.

ImageNet1k

Please go to URL and register on the site. Then you can download ImageNet1k dataset. You should place it under path/to/datasets with the following structure.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

CIFAR10

No problem, just let the code download automatically. URL

CIFAR100

No problem, just let the code download automatically. URL

Oxford 102 Flowers

No problem, just let the code download automatically. URL

Stanford Cars

You should place it under path/to/datasets with the following structure.

│stanford_cars/
├──cars_train/
│  ├── 00001.jpg
│  ├── 00002.jpg
│  ├── ......
├──cars_test/
│  ├── 00001.jpg
│  ├── 00002.jpg
│  ├── ......
├──devkit/
│  ├── cars_meta.mat
│  ├── cars_test_annos.mat
│  ├── cars_train_annos.mat
│  ├── eval_train.m
│  ├── README.txt
│  ├── train_perfect_preds.txt
├──cars_test_annos_withlabels.matcars_test_annos_withlabels.mat

URL

iNaturalist18

You should place it under path/to/datasets with the following structure.

│i_naturalist_18/
├──train_val2018/
│  ├──Actinopterygii/
│  │  ├──2229/
│  │  │  ├── 014a31153ac74bf87f1f730480e4a27a.jpg
│  │  │  ├── 037d062cc1b8a85821449d2cdeca7749.jpg
│  │  │  ├── ......
│  │  ├── ......
│  ├── ......
├──train2018.json
├──val2018.json

URL

iNaturalist19

You should place it under path/to/datasets with the following structure.

│i_naturalist_19/
├──train_val2019/
│  ├──Amphibians/
│  │  ├──153/
│  │  │  ├── 0042d05b4ffbd5a1ce2fc56513a7777e.jpg
│  │  │  ├── 006f69e838b87cfff3d12120795c4ada.jpg
│  │  │  ├── ......
│  │  ├── ......
│  ├── ......
├──train2019.json
├──val2019.json

URL

MS COCO

You should place it under path/to/datasets with the following structure.

│coco/
├──train2017/
│  ├── 000000000009.jpg
│  ├── 000000000025.jpg
│  ├── ......
├──val2017/
│  ├── 000000000139.jpg
│  ├── 000000000285.jpg
│  ├── ......
├──annotations/
│  ├── captions_train2017.json
│  ├── captions_val2017.json
│  ├── instances_train2017.json
│  ├── instances_val2017.json
│  ├── person_keypoints_train2017.json
│  ├── person_keypoints_val2017.json

URL

ADE20K

In order for you to download the ADE20k dataset, you have to register at this site and get approved. Once downloaded the dataset, place it so that it has the following structure.

│ade/
├──ADEChallengeData2016/
│  ├──annotations/
│  │  ├──training/
│  │  │  ├── ADE_train_00000001.png
│  │  │  ├── ADE_train_00000002.png
│  │  │  ├── ......
│  │  ├──validation/
│  │  │  ├── ADE_val_00000001.png
│  │  │  ├── ADE_val_00000002.png
│  │  │  ├── ......
│  ├──images/
│  │  ├──training/
│  │  │  ├── ADE_train_00000001.jpg
│  │  │  ├── ADE_train_00000002.jpg
│  │  │  ├── ......
│  │  ├──validation/
│  │  │  ├── ADE_val_00000001.jpg
│  │  │  ├── ADE_val_00000002.jpg
│  │  │  ├── ......
│  │  ├──
│  ├──objectInfo150.txt
│  ├──sceneCategories.txt

ImageNet1k

configs/settings are available. Each of the training conducted in Subsection 4.1 can be performed in the following commands.

docker run trainer python run.py settings=imagenet-raft-mlp-cross-mlp-emb-s
docker run trainer python run.py settings=imagenet-raft-mlp-cross-mlp-emb-m
docker run trainer python run.py settings=imagenet-raft-mlp-cross-mlp-emb-l

The ablation study for channel rafts in subsection 4.2 ran the following commands.

Ablation Study

docker run trainer python run.py settings=imagenet-org-mixer
docker run trainer python run.py settings=imagenet-raft-mlp-r-1
docker run trainer python run.py settings=imagenet-raft-mlp-r-2
docker run trainer python run.py settings=imagenet-raft-mlp

The ablation study for multi-scale patch embedding in subsection 4.2 ran the following commands.

docker run trainer python run.py settings=imagenet-raft-mlp-cross-mlp-emb-m
docker run trainer python run.py settings=imagenet-raft-mlp-hierarchy-m

Transfer Learning

docker run trainer python run.py settings=finetune/cars-org-mixer.yaml
docker run trainer python run.py settings=finetune/cars-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/cars-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/cars-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/cifar10-org-mixer.yaml
docker run trainer python run.py settings=finetune/cifar10-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/cifar10-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/cifar10-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/cifar100-org-mixer.yaml
docker run trainer python run.py settings=finetune/cifar100-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/cifar100-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/cifar100-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/flowers102-org-mixer.yaml
docker run trainer python run.py settings=finetune/flowers102-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/flowers102-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/flowers102-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/inat18-org-mixer.yaml
docker run trainer python run.py settings=finetune/inat18-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/inat18-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/inat18-raft-mlp-cross-mlp-emb-l.yaml
docker run trainer python run.py settings=finetune/inat19-org-mixer.yaml
docker run trainer python run.py settings=finetune/inat19-raft-mlp-cross-mlp-emb-s.yaml
docker run trainer python run.py settings=finetune/inat19-raft-mlp-cross-mlp-emb-m.yaml
docker run trainer python run.py settings=finetune/inat19-raft-mlp-cross-mlp-emb-l.yaml

Object Detection

The weights already trained by ImageNet should be placed in the following path.

path/to/datasets/weights/imagenet-raft-mlp-cross-mlp-emb-s/last_model_0.pt
path/to/datasets/weights/imagenet-raft-mlp-cross-mlp-emb-l/last_model_0.pt
path/to/datasets/weights/imagenet-raft-mlp-cross-mlp-emb-m/last_model_0.pt
path/to/datasets/weights/imagenet-org-mixer/last_model_0.pt

Please execute the following commands.

docker run trainer bash ./detection.sh configs/detection/maskrcnn_org_mixer_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/maskrcnn_raftmlp_l_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/maskrcnn_raftmlp_m_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/maskrcnn_raftmlp_s_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/retinanet_org_mixer_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/retinanet_raftmlp_l_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/retinanet_raftmlp_m_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./detection.sh configs/detection/retinanet_raftmlp_s_fpn_1x_coco.py 8 --seed=42 --deterministic --gpus=8

Semantic Segmentation

As with object detection, the following should be executed after placing the weight files in advance.

docker run trainer bash ./segmentation.sh configs/segmentation/fpn_org_mixer_512x512_40k_ade20k.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./segmentation.sh configs/segmentation/fpn_raftmlp_s_512x512_40k_ade20k.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./segmentation.sh configs/segmentation/fpn_raftmlp_m_512x512_40k_ade20k.py 8 --seed=42 --deterministic --gpus=8
docker run trainer bash ./segmentation.sh configs/segmentation/fpn_raftmlp_l_512x512_40k_ade20k.py 8 --seed=42 --deterministic --gpus=8

Reference

@misc{tatsunami2021raftmlp,
  title={RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?},
  author={Yuki Tatsunami and Masato Taki},
  year={2021}
  eprint={2108.04384},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

License

This repository is relased under the Apache 2.0 license as douns in the LICENSE file.

Owner
Okojo
Okojo
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022