SoGCN: Second-Order Graph Convolutional Networks

Overview

SoGCN: Second-Order Graph Convolutional Networks

This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in PyTorch. All the hyper-parameters and experiment settings have been included in this repo.

Requirements

For the GNN benchmarking part, our experiments are based on GNN Benchmark. Please follow the instructions in Benchmark Installation to install the running environment. Our code is tested with PyTorch 1.3.1 + Cuda Toolkit 10.0.

For the experiments on OGB Open Graph Benchmark, we built our models based on offical code. Please follow the instructions in Getting Started to configure the running environment. Our code is tested with PyTorch 1.4.0 + Cuda Toolkit 10.1.

Our experiments is conducted on a 4-core Nvidia Quadro P6000 GPU running on Ubuntu 18.04.2 LTS.

Reproduce Results

For SGS and GNN benchmark datasets, we provide a script named 'scripts/exp.py' to run a series of model training in screen sessions. You can type python scripts/exp.py -h to view its usage. To OGB benchmark dataset, we provide shell scripts 'scripts/run_ogbn_proteins.sh' and 'scripts/run_ogbg_molhiv.sh' to reproduce results with our hyper-parameter settings.

For convenience, below presents the commands to reproduce our results.

Synthetic Graph Spectrum Dataset

To train models on SGS datasets, run the following commands:

## High-Pass
python scripts/exp.py -a start -e highpass_sogcn -t SGS -g 1111 --dataset SGS_HIGH_PASS --config 'configs/SGS_node_regression_SoGCN.json'
python scripts/exp.py -a start -e highpass_sogcn -t SGS -g 1111 --dataset SGS_HIGH_PASS --config 'configs/SGS_node_regression_GCN.json'
python scripts/exp.py -a start -e highpass_sogcn -t SGS -g 1111 --dataset SGS_HIGH_PASS --config 'configs/SGS_node_regression_GIN.json'

## Low-Pass
python scripts/exp.py -a start -e lowpass_sogcn -t SGS -g 1111 --dataset SGS_LOW_PASS --config 'configs/SGS_node_regression_SoGCN.json'
python scripts/exp.py -a start -e lowpass_sogcn -t SGS -g 1111 --dataset SGS_LOW_PASS --config 'configs/SGS_node_regression_GCN.json'
python scripts/exp.py -a start -e lowpass_sogcn -t SGS -g 1111 --dataset SGS_LOW_PASS --config 'configs/SGS_node_regression_GIN.json'

## Band-Pass
python scripts/exp.py -a start -e bandpass_sogcn -t SGS -g 1111 --dataset SGS_BAND_PASS --config 'configs/SGS_node_regression_SoGCN.json'
python scripts/exp.py -a start -e bandpass_sogcn -t SGS -g 1111 --dataset SGS_BAND_PASS --config 'configs/SGS_node_regression_GCN.json'
python scripts/exp.py -a start -e bandpass_sogcn -t SGS -g 1111 --dataset SGS_BAND_PASS --config 'configs/SGS_node_regression_GIN.json'

Note the results will be saved to '_out/SGS_node_regression/'.

Open Graph Benchmarks

Running the following commands will reproduce our results on Open Graph Benchmark datasets:

scripts/run_ogbn_proteins.sh <log_dir> [<gpu_id>] [--test]
scripts/run_ogbg_molhiv.sh <log_dir> [<gpu_id>] [--test]

where log_dir specifies the folder to load or save output logs. The downloaded log files will be saved in _out/protein_nodeproppred and _out/molhiv_graphproppred for ogbn-protein and ogbn-molhiv datasets, respectively. gpu_id specifies the GPU device to run our models. Add --test if you only want to reload the log files and read out the testing results. The OGB dataset will be automatically downloaded into data/OGB directory at the first run.

To download the saved log files for ogb datasets, please run the following scripts:

bash scripts/download_logfiles_ogb.sh

GNN Benchmarks

To test on our pretrained models on GNN benchmarks, please follow the steps as below:

  1. Download our pretrained models.
# make sure the commands below are executed in the root directory of this project
bash scripts/download_pretrained_molecules.sh
bash scripts/download_pretrained_superpixels.sh
bash scripts/download_pretrained_SBMs.sh

Pretrained models will be downloaded to '_out/molecules_graph_regression', '_out/superpixels_graph_classification', '_out/SBMs_node_classification', respectively.

  1. Type the commands for different tasks

Molecules Graph Regression

## ZINC
python main_molecules_graph_regression.py --model SoGCN --dataset ZINC --gpu_id 0 --test True --out_dir _out/molecules_graph_regression/zinc_sogcn
python main_molecules_graph_regression.py --model SoGCN --dataset ZINC --gpu_id 0 --test True --out_dir _out/molecules_graph_regression/zinc_sogcn_gru

Superpixels Graph Classification

## MNIST
python main_superpixels_graph_classification.py --model SoGCN --dataset MNIST --gpu_id 0 --test True --out_dir _out/superpixels_graph_classification/mnist_sogcn
python main_superpixels_graph_classification.py --model SoGCN --dataset MNIST --gpu_id 0 --test True --out_dir _out/superpixels_graph_classification/mnist_sogcn_gru


## CIFAR10
python main_superpixels_graph_classification.py --model SoGCN --dataset CIFAR10 --gpu_id 0 --test True --out_dir _out/superpixels_graph_classification/cifar10_sogcn
python main_superpixels_graph_classification.py --model SoGCN --dataset CIFAR10 --gpu_id 0 --test True --out_dir _out/superpixels_graph_classification/cifar10_sogcn_gru

SBMs Node Classification

## CLUSTER
python main_SBMs_node_classification.py --model SoGCN --dataset SBM_CLUSTER  --verbose True --gpu_id 0 --test True --out_dir _out/SBMs_node_classification/cluster_sogcn
python main_SBMs_node_classification.py --model SoGCN --dataset SBM_CLUSTER  --verbose True --gpu_id 0 --test True --out_dir _out/SBMs_node_classification/cluster_sogcn_gru

## PATTERN
python main_SBMs_node_classification.py --model SoGCN --dataset SBM_PATTERN  --verbose True --gpu_id 0 --test True --out_dir _out/SBMs_node_classification/pattern_sogcn
python main_SBMs_node_classification.py --model SoGCN --dataset SBM_PATTERN  --verbose True --gpu_id 0 --test True --out_dir _out/SBMs_node_classification/pattern_sogcn_gru
Owner
Yuehao
PhD in Computer Science & Engineering @ CUHK. Research interest includes Graphics + Vision + Machine Learning.
Yuehao
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022