SoGCN: Second-Order Graph Convolutional Networks

Overview

SoGCN: Second-Order Graph Convolutional Networks

This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in PyTorch. All the hyper-parameters and experiment settings have been included in this repo.

Requirements

For the GNN benchmarking part, our experiments are based on GNN Benchmark. Please follow the instructions in Benchmark Installation to install the running environment. Our code is tested with PyTorch 1.3.1 + Cuda Toolkit 10.0.

For the experiments on OGB Open Graph Benchmark, we built our models based on offical code. Please follow the instructions in Getting Started to configure the running environment. Our code is tested with PyTorch 1.4.0 + Cuda Toolkit 10.1.

Our experiments is conducted on a 4-core Nvidia Quadro P6000 GPU running on Ubuntu 18.04.2 LTS.

Reproduce Results

For SGS and GNN benchmark datasets, we provide a script named 'scripts/exp.py' to run a series of model training in screen sessions. You can type python scripts/exp.py -h to view its usage. To OGB benchmark dataset, we provide shell scripts 'scripts/run_ogbn_proteins.sh' and 'scripts/run_ogbg_molhiv.sh' to reproduce results with our hyper-parameter settings.

For convenience, below presents the commands to reproduce our results.

Synthetic Graph Spectrum Dataset

To train models on SGS datasets, run the following commands:

## High-Pass
python scripts/exp.py -a start -e highpass_sogcn -t SGS -g 1111 --dataset SGS_HIGH_PASS --config 'configs/SGS_node_regression_SoGCN.json'
python scripts/exp.py -a start -e highpass_sogcn -t SGS -g 1111 --dataset SGS_HIGH_PASS --config 'configs/SGS_node_regression_GCN.json'
python scripts/exp.py -a start -e highpass_sogcn -t SGS -g 1111 --dataset SGS_HIGH_PASS --config 'configs/SGS_node_regression_GIN.json'

## Low-Pass
python scripts/exp.py -a start -e lowpass_sogcn -t SGS -g 1111 --dataset SGS_LOW_PASS --config 'configs/SGS_node_regression_SoGCN.json'
python scripts/exp.py -a start -e lowpass_sogcn -t SGS -g 1111 --dataset SGS_LOW_PASS --config 'configs/SGS_node_regression_GCN.json'
python scripts/exp.py -a start -e lowpass_sogcn -t SGS -g 1111 --dataset SGS_LOW_PASS --config 'configs/SGS_node_regression_GIN.json'

## Band-Pass
python scripts/exp.py -a start -e bandpass_sogcn -t SGS -g 1111 --dataset SGS_BAND_PASS --config 'configs/SGS_node_regression_SoGCN.json'
python scripts/exp.py -a start -e bandpass_sogcn -t SGS -g 1111 --dataset SGS_BAND_PASS --config 'configs/SGS_node_regression_GCN.json'
python scripts/exp.py -a start -e bandpass_sogcn -t SGS -g 1111 --dataset SGS_BAND_PASS --config 'configs/SGS_node_regression_GIN.json'

Note the results will be saved to '_out/SGS_node_regression/'.

Open Graph Benchmarks

Running the following commands will reproduce our results on Open Graph Benchmark datasets:

scripts/run_ogbn_proteins.sh <log_dir> [<gpu_id>] [--test]
scripts/run_ogbg_molhiv.sh <log_dir> [<gpu_id>] [--test]

where log_dir specifies the folder to load or save output logs. The downloaded log files will be saved in _out/protein_nodeproppred and _out/molhiv_graphproppred for ogbn-protein and ogbn-molhiv datasets, respectively. gpu_id specifies the GPU device to run our models. Add --test if you only want to reload the log files and read out the testing results. The OGB dataset will be automatically downloaded into data/OGB directory at the first run.

To download the saved log files for ogb datasets, please run the following scripts:

bash scripts/download_logfiles_ogb.sh

GNN Benchmarks

To test on our pretrained models on GNN benchmarks, please follow the steps as below:

  1. Download our pretrained models.
# make sure the commands below are executed in the root directory of this project
bash scripts/download_pretrained_molecules.sh
bash scripts/download_pretrained_superpixels.sh
bash scripts/download_pretrained_SBMs.sh

Pretrained models will be downloaded to '_out/molecules_graph_regression', '_out/superpixels_graph_classification', '_out/SBMs_node_classification', respectively.

  1. Type the commands for different tasks

Molecules Graph Regression

## ZINC
python main_molecules_graph_regression.py --model SoGCN --dataset ZINC --gpu_id 0 --test True --out_dir _out/molecules_graph_regression/zinc_sogcn
python main_molecules_graph_regression.py --model SoGCN --dataset ZINC --gpu_id 0 --test True --out_dir _out/molecules_graph_regression/zinc_sogcn_gru

Superpixels Graph Classification

## MNIST
python main_superpixels_graph_classification.py --model SoGCN --dataset MNIST --gpu_id 0 --test True --out_dir _out/superpixels_graph_classification/mnist_sogcn
python main_superpixels_graph_classification.py --model SoGCN --dataset MNIST --gpu_id 0 --test True --out_dir _out/superpixels_graph_classification/mnist_sogcn_gru


## CIFAR10
python main_superpixels_graph_classification.py --model SoGCN --dataset CIFAR10 --gpu_id 0 --test True --out_dir _out/superpixels_graph_classification/cifar10_sogcn
python main_superpixels_graph_classification.py --model SoGCN --dataset CIFAR10 --gpu_id 0 --test True --out_dir _out/superpixels_graph_classification/cifar10_sogcn_gru

SBMs Node Classification

## CLUSTER
python main_SBMs_node_classification.py --model SoGCN --dataset SBM_CLUSTER  --verbose True --gpu_id 0 --test True --out_dir _out/SBMs_node_classification/cluster_sogcn
python main_SBMs_node_classification.py --model SoGCN --dataset SBM_CLUSTER  --verbose True --gpu_id 0 --test True --out_dir _out/SBMs_node_classification/cluster_sogcn_gru

## PATTERN
python main_SBMs_node_classification.py --model SoGCN --dataset SBM_PATTERN  --verbose True --gpu_id 0 --test True --out_dir _out/SBMs_node_classification/pattern_sogcn
python main_SBMs_node_classification.py --model SoGCN --dataset SBM_PATTERN  --verbose True --gpu_id 0 --test True --out_dir _out/SBMs_node_classification/pattern_sogcn_gru
Owner
Yuehao
PhD in Computer Science & Engineering @ CUHK. Research interest includes Graphics + Vision + Machine Learning.
Yuehao
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Joint Discriminative and Generative Learning for Person Re-identification [Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp] Joint Discriminative

NVIDIA Research Projects 1.2k Dec 30, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023