Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Overview

Neural Architecture Search for Spiking Neural Networks

Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https://arxiv.org/abs/2201.10355)

For getting knowledge on NAS without training in ANN domain (refer: https://github.com/BayesWatch/nas-without-training)

Prerequisites

  • Python 3.9
  • PyTorch 1.10.0
  • NVIDIA GPU (>= 12GB)
  • CUDA 10.2 (optional)

Getting Started

Conda Environment Setting

conda create -n SNASNet 
conda activate SNASNet
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install scipy

Spikingjelly Installation (ref: https://github.com/fangwei123456/spikingjelly)

git clone https://github.com/fangwei123456/spikingjelly.git
cd spikingjelly
python setup.py install

Training and testing

  • Arguments required for training and testing are contained in ``config.py```
  • Here is an example of running an experiment on CIFAR100
  • (if a user want to skip search process and use predefined architecgtur) A architecture can be parsed by --cnt_mat 0302 0030 3003 0000 format

Example) Architecture and the corresponding connection matrix

Training

  • Run the following command
python search_snn.py  --exp_name 'cifar100_backward' --dataset 'cifar100'  --celltype 'backward' --batch_size 32 --num_search 5000 

simple argument instruction

--exp_name: savefile name

--dataset: dataset for experiment

--celltype: find backward connections or forward connections

--num_search: number of architecture candidates for searching

Testing (on pretrained model)

  • As a first step, download pretrained parameters (link) to ./savemodel/save_cifar100_bw.pth.tar
  • The above pretrained model is for CIFAR100 / architecture --cnt_mat 0302 0030 3003 0000

  • Run the following command

python search_snn.py  --dataset 'cifar100' --cnt_mat 0302 0030 3003 0000 --savemodel_pth './savemodel/save_cifar100_bw.pth.tar'  --celltype 'backward'
Owner
Intelligent Computing Lab at Yale University
Intelligent Computing Lab at Yale University
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023