DeconvNet : Learning Deconvolution Network for Semantic Segmentation

Overview

DeconvNet: Learning Deconvolution Network for Semantic Segmentation

Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH

Acknowledgements: Thanks to Yangqing Jia and the BVLC team for creating Caffe.

Introduction

DeconvNet is state-of-the-art semantic segmentation system that combines bottom-up region proposals with multi-layer decovolution network.

Detailed description of the system will be provided by our technical report [arXiv tech report] http://arxiv.org/abs/1505.04366

Citation

If you're using this code in a publication, please cite our papers.

@article{noh2015learning,
  title={Learning Deconvolution Network for Semantic Segmentation},
  author={Noh, Hyeonwoo and Hong, Seunghoon and Han, Bohyung},
  journal={arXiv preprint arXiv:1505.04366},
  year={2015}
}

Pre-trained Model

If you need model definition and pre-trained model only, you can download them from following location: 0. caffe for DeconvNet: https://github.com/HyeonwooNoh/caffe 0. DeconvNet model definition: http://cvlab.postech.ac.kr/research/deconvnet/model/DeconvNet/DeconvNet_inference_deploy.prototxt 0. Pre-trained DeconvNet weight: http://cvlab.postech.ac.kr/research/deconvnet/model/DeconvNet/DeconvNet_trainval_inference.caffemodel

Licence

This software is being made available for research purpose only. Check LICENSE file for details.

System Requirements

This software is tested on Ubuntu 14.04 LTS (64bit).

Prerequisites 0. MATLAB (tested with 2014b on 64-bit Linux) 0. prerequisites for caffe(http://caffe.berkeleyvision.org/installation.html#prequequisites)

Installing DeconvNet

By running "setup.sh" you can download all the necessary file for training and inference include: 0. caffe: you need modified version of caffe which support DeconvNet - https://github.com/HyeonwooNoh/caffe.git 0. data: data used for training stage 1 and 2 0. model: caffemodel of trained DeconvNet and other caffemodels required for training

Training DeconvNet

Training scripts are included in ./training/ directory

To train DeconvNet you can simply run following scripts in order: 0. 001_start_train.sh : script for first stage training 0. 002_start_train.sh : script for second stage training 0. 003_start_make_bn_layer_testable : script converting trained DeconvNet with bn layer to inference mode

Inference EDeconvNet+CRF

Run run_demo.m to reproduce EDeconvNet+CRF results on VOC2012 test data.

This script will generated EDeconvNet+CRF results through following steps: 0. run FCN-8s and cache the score [cache_FCN8s_results.m] 0. generate DeconvNet score and apply ensemble with FCN-8s score, post processing with densecrf [generate_EDeconvNet_CRF_results.m]

EDeconvNet+CRF obtains 72.5 mean I/U on PASCAL VOC 2012 Test

External dependencies [can be downloaded by running "setup.sh" script] 0. FCN-8s model and weight file [https://github.com/BVLC/caffe/wiki/Model-Zoo] 0. densecrf with matlab wrapper [https://github.com/johannesu/meanfield-matlab.git] 0. cached proposal bounding boxes extracted with edgebox object proposal [https://github.com/pdollar/edges]

Owner
Hyeonwoo Noh
Hyeonwoo Noh
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022