Post-Training Quantization for Vision transformers.

Related tags

Deep LearningPTQ4ViT
Overview

PTQ4ViT

Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on these activation values. And we use a Hessian guided metric to evaluate different scaling factors, which improves the accuracy of calibration with a small cost. The quantized vision transformers (ViT, DeiT, and Swin) achieve near-lossless prediction accuracy (less than 0.5% drop at 8-bit quantization) on the ImageNet classification task. Please read the paper for details.

Install

Requirement

  • python>=3.5
  • pytorch>=1.5
  • matplotlib
  • pandas
  • timm

Datasets

To run example testing, you should put your ImageNet2012 dataset in path /datasets/imagenet.

We use ViTImageNetLoaderGenerator in utils/datasets.py to initialize our DataLoader. If your Imagenet datasets are stored elsewhere, you'll need to manually pass its root as an argument when instantiating a ViTImageNetLoaderGenerator.

Usage

1. Run example quantization

To test on all models with BasePTQ/PTQ4ViT, run

python example/test_all.py

To run ablation testing, run

python example/test_ablation.py

You can run the testing scripts with multiple GPUs. For example, calling

python example/test_all.py --multigpu --n_gpu 6

will use 6 gpus to run the test.

2. Download quantized model checkpoints

(Coming soon)

Results

Results of BasePTQ

model original w8a8 w6a6
ViT-S/224/32 75.99 73.61 60.144
ViT-S/224 81.39 80.468 70.244
ViT-B/224 84.54 83.896 75.668
ViT-B/384 86.00 85.352 46.886
DeiT-S/224 79.80 77.654 72.268
DeiT-B/224 81.80 80.946 78.786
DeiT-B/384 83.11 82.33 68.442
Swin-T/224 81.39 80.962 78.456
Swin-S/224 83.23 82.758 81.742
Swin-B/224 85.27 84.792 83.354
Swin-B/384 86.44 86.168 85.226

Results of PTQ4ViT

model original w8a8 w6a6
ViT-S/224/32 75.99 75.582 71.908
ViT-S/224 81.39 81.002 78.63
ViT-B/224 84.54 84.25 81.65
ViT-B/384 86.00 85.828 83.348
DeiT-S/224 79.80 79.474 76.282
DeiT-B/224 81.80 81.482 80.25
DeiT-B/384 83.11 82.974 81.55
Swin-T/224 81.39 81.246 80.47
Swin-S/224 83.23 83.106 82.38
Swin-B/224 85.27 85.146 84.012
Swin-B/384 86.44 86.394 85.388

Results of Ablation

  • ViT-S/224 (original top-1 accuracy 81.39%)
Hessian Guided Softmax Twin GELU Twin W8A8 W6A6
80.47 70.24
80.93 77.20
81.11 78.57
80.84 76.93
79.25 74.07
81.00 78.63
  • ViT-B/224 (original top-1 accuracy 84.54%)
Hessian Guided Softmax Twin GELU Twin W8A8 W6A6
83.90 75.67
83.97 79.90
84.07 80.76
84.10 80.82
83.40 78.86
84.25 81.65
  • ViT-B/384 (original top-1 accuracy 86.00%)
Hessian Guided Softmax Twin GELU Twin W8A8 W6A6
85.35 46.89
85.42 79.99
85.67 82.01
85.60 82.21
84.35 80.86
85.89 83.19

Citation

@article{PTQ4ViT_cvpr2022,
    title={PTQ4ViT: Post-Training Quantization Framework for Vision Transformers},
    author={Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, Guangyu Sun},
    journal={arXiv preprint arXiv:2111.12293},
    year={2022},
}
Owner
Zhihang Yuan
Zhihang Yuan
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
202 Jan 06, 2023
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

Streamlit - Drawable Canvas Streamlit component which provides a sketching canvas using Fabric.js. Features Draw freely, lines, circles, boxes and pol

Fanilo Andrianasolo 325 Dec 28, 2022
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023