FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

Related tags

Deep LearningFaceQgen
Overview

FaceQgen

FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

This repository is based on the paper: "FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment" presented in the IEEE International Conference on Automatic Face and Gesture Recognition 2021.

FaceQgen is a a face quality assessment method based on GANs capable of inferring quality directly from face images. It avoids using any type of numerical labelling of the training images thanks to following a semi-supervised learning approach without the need of a specific measurement of quality for its groundtruth apart from selecting a single high quality image per subject.

FaceQgen performs face image restoration, returning a high quality image (frontal pose, homogeneous background, etc.) when receiving a face image of unknown quality. We use three different similarity measures between the original and the restored images as quality measures: SSIM,MSE, and the output of the Discriminator of FaceQgen. Faces of high quality will experience less transformations during restoration, so the similarity values obtained in those cases will be higher than the ones obtained from low quality images.

The training of FaceQgen was done using the SCFace database.

-- Configuring environment in Windows:

  1. Installing Conda: https://conda.io/projects/conda/en/latest/user-guide/install/windows.html

Update Conda in the default environment:

conda update conda
conda upgrade --all

Create a new environment:

conda create -n [env-name]

Activate the environment:

conda activate [env-name]
  1. Installing dependencies in your environment:

Install Tensorflow and all its dependencies:

pip install tensorflow

Install Keras:

pip install keras

Install OpenCV:

conda install -c conda-forge opencv
  1. If you want to use a CUDA compatible GPU for faster predictions:

You will need CUDA and the Nvidia drivers installed in your computer: https://docs.nvidia.com/deeplearning/sdk/cudnn-install/

Then, install the GPU version of Tensorflow:

pip install tensorflow-gpu

-- Using FaceQgen for predicting scores:

  1. Download or clone the repository.
  2. Due to the size of the video example, please download one of the the FaceQgen pretrained model and place the downloaded .h5 file it in the /src folder:
  1. Edit and run the FaceQgen_obtainscores_Keras.py script.
    • You will need to change the folder from which the script will try to charge the face images. It is src/Samples_cropped by default.
    • The best results will be obtained when the input images have been cropped just to the zone of the detected face. In our experiments we have used the MTCNN face detector from here, but other detector can be used.
    • FaceQgen will ouput a quality score for each input image. All the scores will are saved in a .txt file into the src folder. This file contain each filename with its associated quality metric.
Owner
Javier Hernandez-Ortega
M.Sc. in Computer Science & Electrical Engineering from Universidad Autonoma de Madrid. PhD student.
Javier Hernandez-Ortega
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P

valeo.ai 24 May 31, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023