FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

Related tags

Deep LearningFaceQgen
Overview

FaceQgen

FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

This repository is based on the paper: "FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment" presented in the IEEE International Conference on Automatic Face and Gesture Recognition 2021.

FaceQgen is a a face quality assessment method based on GANs capable of inferring quality directly from face images. It avoids using any type of numerical labelling of the training images thanks to following a semi-supervised learning approach without the need of a specific measurement of quality for its groundtruth apart from selecting a single high quality image per subject.

FaceQgen performs face image restoration, returning a high quality image (frontal pose, homogeneous background, etc.) when receiving a face image of unknown quality. We use three different similarity measures between the original and the restored images as quality measures: SSIM,MSE, and the output of the Discriminator of FaceQgen. Faces of high quality will experience less transformations during restoration, so the similarity values obtained in those cases will be higher than the ones obtained from low quality images.

The training of FaceQgen was done using the SCFace database.

-- Configuring environment in Windows:

  1. Installing Conda: https://conda.io/projects/conda/en/latest/user-guide/install/windows.html

Update Conda in the default environment:

conda update conda
conda upgrade --all

Create a new environment:

conda create -n [env-name]

Activate the environment:

conda activate [env-name]
  1. Installing dependencies in your environment:

Install Tensorflow and all its dependencies:

pip install tensorflow

Install Keras:

pip install keras

Install OpenCV:

conda install -c conda-forge opencv
  1. If you want to use a CUDA compatible GPU for faster predictions:

You will need CUDA and the Nvidia drivers installed in your computer: https://docs.nvidia.com/deeplearning/sdk/cudnn-install/

Then, install the GPU version of Tensorflow:

pip install tensorflow-gpu

-- Using FaceQgen for predicting scores:

  1. Download or clone the repository.
  2. Due to the size of the video example, please download one of the the FaceQgen pretrained model and place the downloaded .h5 file it in the /src folder:
  1. Edit and run the FaceQgen_obtainscores_Keras.py script.
    • You will need to change the folder from which the script will try to charge the face images. It is src/Samples_cropped by default.
    • The best results will be obtained when the input images have been cropped just to the zone of the detected face. In our experiments we have used the MTCNN face detector from here, but other detector can be used.
    • FaceQgen will ouput a quality score for each input image. All the scores will are saved in a .txt file into the src folder. This file contain each filename with its associated quality metric.
Owner
Javier Hernandez-Ortega
M.Sc. in Computer Science & Electrical Engineering from Universidad Autonoma de Madrid. PhD student.
Javier Hernandez-Ortega
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022
An efficient framework for reinforcement learning.

rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1

16 Nov 30, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022