Count GitHub Stars ⭐

Overview

Count GitHub Stars per Day

Track GitHub stars per day over a date range to measure the open-source popularity of different repositories.

Requirements

PyGitHub is required to access the GitHub REST API via Python. This library enables you to manage GitHub resources such as repositories, user profiles, and organizations in your Python applications.

pip install PyGithub

Usage

Update TOKEN to a valid GitHub access token in count_stars.py L15 and then run:

python count_stars.py

Result

When run on April 10th, 2022 result is:

Counting stars for last 30.0 days from 02 May 2022

ultralytics/yolov5                      1572 stars  (52.4/day)  :   6%|| 1572/25683 [00:16<04:15, 94.53it/s]
facebookresearch/detectron2             391 stars   (13.0/day)  :   2%|| 391/20723 [00:04<03:56, 85.86it/s]
deepmind/deepmind-research              165 stars   (5.5/day)   :   2%|| 165/10079 [00:01<01:50, 89.52it/s]
aws/amazon-sagemaker-examples           120 stars   (4.0/day)   :   2%|| 120/6830 [00:02<02:16, 49.17it/s]
awslabs/autogluon                       127 stars   (4.2/day)   :   3%|| 127/4436 [00:01<01:00, 71.45it/s]
microsoft/LightGBM                      122 stars   (4.1/day)   :   1%|          | 122/13730 [00:01<03:10, 71.54it/s]
openai/gpt-3                            95 stars    (3.2/day)   :   1%|          | 95/11225 [00:01<03:34, 52.00it/s]
apple/turicreate                        40 stars    (1.3/day)   :   0%|          | 40/10676 [00:00<02:24, 73.59it/s]
apple/coremltools                       41 stars    (1.4/day)   :   2%|| 41/2641 [00:00<00:46, 56.00it/s]
google/automl                           55 stars    (1.8/day)   :   1%|          | 55/4991 [00:00<01:25, 57.53it/s]
google-research/google-research         548 stars   (18.3/day)  :   2%|| 548/23087 [00:07<05:11, 72.37it/s]
google-research/vision_transformer      279 stars   (9.3/day)   :   6%|| 279/5043 [00:02<00:49, 95.93it/s]
google-research/bert                    283 stars   (9.4/day)   :   1%|          | 283/31066 [00:03<07:01, 73.11it/s]
NVlabs/stylegan3                        158 stars   (5.3/day)   :   4%|| 158/4045 [00:01<00:44, 86.41it/s]
Tencent/ncnn                            278 stars   (9.3/day)   :   2%|| 278/14440 [00:03<02:41, 87.55it/s]
Megvii-BaseDetection/YOLOX              273 stars   (9.1/day)   :   4%|| 273/6286 [00:02<01:04, 92.53it/s]
PaddlePaddle/Paddle                     239 stars   (8.0/day)   :   1%|| 239/18086 [00:02<03:33, 83.73it/s]
rwightman/pytorch-image-models          772 stars   (25.7/day)  :   4%|| 772/18169 [00:08<03:21, 86.24it/s]
streamlit/streamlit                     375 stars   (12.5/day)  :   2%|| 375/18834 [00:03<03:07, 98.67it/s]
explosion/spaCy                         234 stars   (7.8/day)   :   1%|          | 234/23249 [00:02<03:47, 101.24it/s]
PyTorchLightning/pytorch-lightning      407 stars   (13.6/day)  :   2%|| 407/18246 [00:04<03:02, 97.83it/s]
ray-project/ray                         545 stars   (18.2/day)  :   3%|| 545/20228 [00:05<03:03, 107.33it/s]
fastai/fastai                           136 stars   (4.5/day)   :   1%|          | 136/22202 [00:01<04:28, 82.22it/s]
AlexeyAB/darknet                        248 stars   (8.3/day)   :   1%|| 248/18993 [00:02<03:40, 84.84it/s]
pjreddie/darknet                        201 stars   (6.7/day)   :   1%|          | 201/22651 [00:02<05:13, 71.62it/s]
WongKinYiu/yolor                        92 stars    (3.1/day)   :   6%|| 92/1559 [00:01<00:16, 87.69it/s]
wandb/client                            66 stars    (2.2/day)   :   2%|| 66/3853 [00:00<00:46, 82.16it/s]
Deci-AI/super-gradients                 74 stars    (2.5/day)   :  19%|█▉        | 74/380 [00:00<00:03, 96.71it/s]
neuralmagic/sparseml                    105 stars   (3.5/day)   :  11%|| 105/947 [00:01<00:08, 101.97it/s]
mosaicml/composer                       247 stars   (8.2/day)   :  19%|█▉        | 247/1306 [00:02<00:10, 104.76it/s]
nebuly-ai/nebullvm                      205 stars   (6.8/day)   :  20%|█▉        | 205/1045 [00:02<00:08, 97.46it/s]
Done in 125.7s
Owner
Ultralytics
YOLOv5 🚀 and Vision AI ⭐
Ultralytics
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Woosung Choi 63 Nov 14, 2022
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022