DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

Overview

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021)

input image, aligned reconstruction, animation with various poses & expressions

This is the official Pytorch implementation of DECA.

DECA reconstructs a 3D head model with detailed facial geometry from a single input image. The resulting 3D head model can be easily animated. Please refer to the arXiv paper for more details.

The main features:

  • Reconstruction: produces head pose, shape, detailed face geometry, and lighting information from a single image.
  • Animation: animate the face with realistic wrinkle deformations.
  • Robustness: tested on facial images in unconstrained conditions. Our method is robust to various poses, illuminations and occlusions.
  • Accurate: state-of-the-art 3D face shape reconstruction on the NoW Challenge benchmark dataset.

Getting Started

Clone the repo:

git clone https://github.com/YadiraF/DECA
cd DECA

Requirements

  • Python 3.7 (numpy, skimage, scipy, opencv)
  • PyTorch >= 1.6 (pytorch3d)
  • face-alignment (Optional for detecting face)
    You can run
    pip install -r requirements.txt
    Or use virtual environment by runing
    bash install_conda.sh
    For visualization, we use our rasterizer that uses pytorch JIT Compiling Extensions. If there occurs a compiling error, you can install pytorch3d instead and set --rasterizer_type=pytorch3d when running the demos.

Usage

  1. Prepare data
    a. download FLAME model, choose FLAME 2020 and unzip it, copy 'generic_model.pkl' into ./data
    b. download DECA trained model, and put it in ./data (no unzip required)
    c. (Optional) follow the instructions for the Albedo model to get 'FLAME_albedo_from_BFM.npz', put it into ./data

  2. Run demos
    a. reconstruction

    python demos/demo_reconstruct.py -i TestSamples/examples --saveDepth True --saveObj True

    to visualize the predicted 2D landmanks, 3D landmarks (red means non-visible points), coarse geometry, detailed geometry, and depth.

    You can also generate an obj file (which can be opened with Meshlab) that includes extracted texture from the input image.

    Please run python demos/demo_reconstruct.py --help for more details.

    b. expression transfer

    python demos/demo_transfer.py

    Given an image, you can reconstruct its 3D face, then animate it by tranfering expressions from other images. Using Meshlab to open the detailed mesh obj file, you can see something like that:

    (Thank Soubhik for allowing me to use his face ^_^)

    Note that, you need to set '--useTex True' to get full texture.

    c. for the teaser gif (reposing and animation)

    python demos/demo_teaser.py 

    More demos and training code coming soon.

Evaluation

DECA (ours) achieves 9% lower mean shape reconstruction error on the NoW Challenge dataset compared to the previous state-of-the-art method.
The left figure compares the cumulative error of our approach and other recent methods (RingNet and Deng et al. have nearly identitical performance, so their curves overlap each other). Here we use point-to-surface distance as the error metric, following the NoW Challenge.

For more details of the evaluation, please check our arXiv paper.

Training

  1. Prepare Training Data

    a. Download image data
    In DECA, we use VGGFace2, BUPT-Balancedface and VoxCeleb2

    b. Prepare label
    FAN to predict 68 2D landmark
    face_segmentation to get skin mask

    c. Modify dataloader
    Dataloaders for different datasets are in decalib/datasets, use the right path for prepared images and labels.

  2. Download face recognition trained model
    We use the model from VGGFace2-pytorch for calculating identity loss, download resnet50_ft, and put it into ./data

  3. Start training

    Train from scratch:

    python main_train.py --cfg configs/release_version/deca_pretrain.yml 
    python main_train.py --cfg configs/release_version/deca_coarse.yml 
    python main_train.py --cfg configs/release_version/deca_detail.yml 

    In the yml files, write the right path for 'output_dir' and 'pretrained_modelpath'.
    You can also use released model as pretrained model, then ignor the pretrain step.

Citation

If you find our work useful to your research, please consider citing:

@inproceedings{DECA:Siggraph2021,
  title={Learning an Animatable Detailed {3D} Face Model from In-The-Wild Images},
  author={Feng, Yao and Feng, Haiwen and Black, Michael J. and Bolkart, Timo},
  journal = {ACM Transactions on Graphics, (Proc. SIGGRAPH)}, 
  volume = {40}, 
  number = {8}, 
  year = {2021}, 
  url = {https://doi.org/10.1145/3450626.3459936} 
}

License

This code and model are available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using the code and model you agree to the terms in the LICENSE.

Acknowledgements

For functions or scripts that are based on external sources, we acknowledge the origin individually in each file.
Here are some great resources we benefit:

We would also like to thank other recent public 3D face reconstruction works that allow us to easily perform quantitative and qualitative comparisons :)
RingNet, Deep3DFaceReconstruction, Nonlinear_Face_3DMM, 3DDFA-v2, extreme_3d_faces, facescape

Owner
Yao Feng
Yao Feng
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi

19 Oct 11, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022