DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

Overview

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021)

input image, aligned reconstruction, animation with various poses & expressions

This is the official Pytorch implementation of DECA.

DECA reconstructs a 3D head model with detailed facial geometry from a single input image. The resulting 3D head model can be easily animated. Please refer to the arXiv paper for more details.

The main features:

  • Reconstruction: produces head pose, shape, detailed face geometry, and lighting information from a single image.
  • Animation: animate the face with realistic wrinkle deformations.
  • Robustness: tested on facial images in unconstrained conditions. Our method is robust to various poses, illuminations and occlusions.
  • Accurate: state-of-the-art 3D face shape reconstruction on the NoW Challenge benchmark dataset.

Getting Started

Clone the repo:

git clone https://github.com/YadiraF/DECA
cd DECA

Requirements

  • Python 3.7 (numpy, skimage, scipy, opencv)
  • PyTorch >= 1.6 (pytorch3d)
  • face-alignment (Optional for detecting face)
    You can run
    pip install -r requirements.txt
    Or use virtual environment by runing
    bash install_conda.sh
    For visualization, we use our rasterizer that uses pytorch JIT Compiling Extensions. If there occurs a compiling error, you can install pytorch3d instead and set --rasterizer_type=pytorch3d when running the demos.

Usage

  1. Prepare data
    a. download FLAME model, choose FLAME 2020 and unzip it, copy 'generic_model.pkl' into ./data
    b. download DECA trained model, and put it in ./data (no unzip required)
    c. (Optional) follow the instructions for the Albedo model to get 'FLAME_albedo_from_BFM.npz', put it into ./data

  2. Run demos
    a. reconstruction

    python demos/demo_reconstruct.py -i TestSamples/examples --saveDepth True --saveObj True

    to visualize the predicted 2D landmanks, 3D landmarks (red means non-visible points), coarse geometry, detailed geometry, and depth.

    You can also generate an obj file (which can be opened with Meshlab) that includes extracted texture from the input image.

    Please run python demos/demo_reconstruct.py --help for more details.

    b. expression transfer

    python demos/demo_transfer.py

    Given an image, you can reconstruct its 3D face, then animate it by tranfering expressions from other images. Using Meshlab to open the detailed mesh obj file, you can see something like that:

    (Thank Soubhik for allowing me to use his face ^_^)

    Note that, you need to set '--useTex True' to get full texture.

    c. for the teaser gif (reposing and animation)

    python demos/demo_teaser.py 

    More demos and training code coming soon.

Evaluation

DECA (ours) achieves 9% lower mean shape reconstruction error on the NoW Challenge dataset compared to the previous state-of-the-art method.
The left figure compares the cumulative error of our approach and other recent methods (RingNet and Deng et al. have nearly identitical performance, so their curves overlap each other). Here we use point-to-surface distance as the error metric, following the NoW Challenge.

For more details of the evaluation, please check our arXiv paper.

Training

  1. Prepare Training Data

    a. Download image data
    In DECA, we use VGGFace2, BUPT-Balancedface and VoxCeleb2

    b. Prepare label
    FAN to predict 68 2D landmark
    face_segmentation to get skin mask

    c. Modify dataloader
    Dataloaders for different datasets are in decalib/datasets, use the right path for prepared images and labels.

  2. Download face recognition trained model
    We use the model from VGGFace2-pytorch for calculating identity loss, download resnet50_ft, and put it into ./data

  3. Start training

    Train from scratch:

    python main_train.py --cfg configs/release_version/deca_pretrain.yml 
    python main_train.py --cfg configs/release_version/deca_coarse.yml 
    python main_train.py --cfg configs/release_version/deca_detail.yml 

    In the yml files, write the right path for 'output_dir' and 'pretrained_modelpath'.
    You can also use released model as pretrained model, then ignor the pretrain step.

Citation

If you find our work useful to your research, please consider citing:

@inproceedings{DECA:Siggraph2021,
  title={Learning an Animatable Detailed {3D} Face Model from In-The-Wild Images},
  author={Feng, Yao and Feng, Haiwen and Black, Michael J. and Bolkart, Timo},
  journal = {ACM Transactions on Graphics, (Proc. SIGGRAPH)}, 
  volume = {40}, 
  number = {8}, 
  year = {2021}, 
  url = {https://doi.org/10.1145/3450626.3459936} 
}

License

This code and model are available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using the code and model you agree to the terms in the LICENSE.

Acknowledgements

For functions or scripts that are based on external sources, we acknowledge the origin individually in each file.
Here are some great resources we benefit:

We would also like to thank other recent public 3D face reconstruction works that allow us to easily perform quantitative and qualitative comparisons :)
RingNet, Deep3DFaceReconstruction, Nonlinear_Face_3DMM, 3DDFA-v2, extreme_3d_faces, facescape

Owner
Yao Feng
Yao Feng
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022