Deep Compression for Dense Point Cloud Maps.

Overview

DEPOCO

This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps.

How to get started (using Docker)

Dependenices nvida-docker

Install nvida-docker and follow these instructions

Data

You can download the dataset from here and link the dataset to the docker container by configuring the Makefile

DATASETS=<path-to-your-data>

Building the docker container

For building the Docker Container simply run

make build

in the root directory.

Running the Code

The first step is to run the docker container:

make run

The following commands assume to be run inside the docker container.

Training

For training a network we first have to create the config file with all the parameters. An example of this can be found in /depoco/config/depoco.yaml. Make sure to give each config file a unique experiment_id: ... to not override previous models. To train the network simply run

python3 trainer -cfg <path-to-your-config>

Evaluation

Evaluating the network on the test set can be done by:

python3 evaluate.py -cfg <path-to-your-config>

All results will be saved in a dictonary.

Plotting the results

We can plot the quantitative results e.g. by using Jupyter-Lab. An example of this is provided in depoco/notebooks/visualize.ipynb. Jupyter-Lab can be started in the Docker container by:

jupyter-lab  --ip 0.0.0.0 --no-browser --allow-root

The 8888 port is forwarded which allows us to use it as if it would be on the host machine.

Pretrained models

The config files and the pretrained weights of our models are stored in depoco/network_files/eX/. The results can be inspected by the jupyter notebook depoco/notebooks/visualize.ipynb.

How to get started (without Docker)

Installation

A list of all dependencies and install instructions can be derived from the Dockerfile.

Running the code

After installation the training and evaluation can be run as explained before.

Qualitative Results

Plotting the point clouds using open3d can be done by

pyhon3 evaluate -cfg <path-to-your-config>

This can not be done in the docker container and thus requires the installation on the local machine.

Citation

If you use this library for any academic work, please cite the original paper.

@article{wiesmann2021ral,
author = {L. Wiesmann and A. Milioto and X. Chen and C. Stachniss and J. Behley},
title = {{Deep Compression for Dense Point Cloud Maps}},
journal = {IEEE Robotics and Automation Letters (RA-L)},
volume = 6,
issue = 2,
pages = {2060-2067},
doi = {10.1109/LRA.2021.3059633},
year = 2021
}
Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck

Image Inpainting with External-internal Learning and Monochromic Bottleneck This repository is for the CVPR 2021 paper: 'Image Inpainting with Externa

97 Nov 29, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

4 Sep 23, 2022