Codebase for ECCV18 "The Sound of Pixels"

Overview

Sound-of-Pixels

Codebase for ECCV18 "The Sound of Pixels".

*This repository is under construction, but the core parts are already there.

Environment

The code is developed under the following configurations.

  • Hardware: 1-4 GPUs (change [--num_gpus NUM_GPUS] accordingly)
  • Software: Ubuntu 16.04.3 LTS, CUDA>=8.0, Python>=3.5, PyTorch>=0.4.0

Training

  1. Prepare video dataset.

    a. Download MUSIC dataset from: https://github.com/roudimit/MUSIC_dataset

    b. Download videos.

  2. Preprocess videos. You can do it in your own way as long as the index files are similar.

    a. Extract frames at 8fps and waveforms at 11025Hz from videos. We have following directory structure:

    data
    ├── audio
    |   ├── acoustic_guitar
    │   |   ├── M3dekVSwNjY.mp3
    │   |   ├── ...
    │   ├── trumpet
    │   |   ├── STKXyBGSGyE.mp3
    │   |   ├── ...
    │   ├── ...
    |
    └── frames
    |   ├── acoustic_guitar
    │   |   ├── M3dekVSwNjY.mp4
    │   |   |   ├── 000001.jpg
    │   |   |   ├── ...
    │   |   ├── ...
    │   ├── trumpet
    │   |   ├── STKXyBGSGyE.mp4
    │   |   |   ├── 000001.jpg
    │   |   |   ├── ...
    │   |   ├── ...
    │   ├── ...
    

    b. Make training/validation index files by running:

    python scripts/create_index_files.py
    

    It will create index files train.csv/val.csv with the following format:

    ./data/audio/acoustic_guitar/M3dekVSwNjY.mp3,./data/frames/acoustic_guitar/M3dekVSwNjY.mp4,1580
    ./data/audio/trumpet/STKXyBGSGyE.mp3,./data/frames/trumpet/STKXyBGSGyE.mp4,493
    

    For each row, it stores the information: AUDIO_PATH,FRAMES_PATH,NUMBER_FRAMES

  3. Train the default model.

./scripts/train_MUSIC.sh
  1. During training, visualizations are saved in HTML format under ckpt/MODEL_ID/visualization/.

Evaluation

  1. (Optional) Download our trained model weights for evaluation.
./scripts/download_trained_model.sh
  1. Evaluate the trained model performance.
./scripts/eval_MUSIC.sh

Reference

If you use the code or dataset from the project, please cite:

    @InProceedings{Zhao_2018_ECCV,
        author = {Zhao, Hang and Gan, Chuang and Rouditchenko, Andrew and Vondrick, Carl and McDermott, Josh and Torralba, Antonio},
        title = {The Sound of Pixels},
        booktitle = {The European Conference on Computer Vision (ECCV)},
        month = {September},
        year = {2018}
    }
Owner
Hang Zhao
Assistant Professor at Tsinghua University, MIT PhD in Computer Vision
Hang Zhao
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022