A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

Overview

Pneumonia Classification

This is a simple REST api that is served to classify pneumonia given an X-ray image of a chest of a human being. The following are expected results when the model does it's classification.

  1. pneumonia bacteria
  2. pneumonia virus
  3. normal

Starting the server

To run this server and make prediction on your own images follow the following steps

  1. create a virtual environment and activate it
  2. run the following command to install packages
pip install -r requirements.txt
  1. navigate to the app.py file and run
python app.py

Model

We are using a simple Multi Layer Perceptron (MLP) achitecture to do the categorical image classification on chest-x-ray images which looks simply as follows:

class MLP(nn.Module):
    def __init__(self, input_dim, output_dim, dropout=.5):
        super(MLP, self).__init__()
        self.input_fc = nn.Linear(input_dim, 250)
        self.hidden_fc = nn.Linear(250, 100)
        self.output_fc = nn.Linear(100, output_dim)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        batch_size = x.shape[0]
        x = x.view(batch_size, -1)
        x = F.relu(self.input_fc(x))
        x = self.dropout(x)
        x = F.relu(self.hidden_fc(x))
        x = self.dropout(x)
        outputs = self.output_fc(x)
        return outputs, x

All images are transformed to grayscale.

Model Metrics

The following table shows all the metrics summary we get after training the model for few 10 epochs.

model name model description test accuracy validation accuracy train accuracy test loss validation loss train loss
chest-x-ray.pt pneumonia classification using Multi Layer Perceprton (MLP) 73.73% 73.73% 72.47% 0.621 0.621 0.639

Classification report

This classification report is based on the first batch of the test dataset i used which consist of 64 images in a batch.

# precision recall f1-score support
micro avg 100% 81% 90% 4096
macro avg 100% 81% 90% 4096
weighted avg 100% 81% 90% 4096

Confusion matrix

The following image represents a confusion matrix for the first batch in the validation set which contains 64 images in a batch:

Pneumonia classification

If you hit the server at http://localhost:3001/api/pneumonia you will be able to get the following expected response that is if the request method is POST and you provide the file expected by the server.

Expected Response

The expected response at http://localhost:3001/api/pneumonia with a file image of the right format will yield the following json response to the client.

{
  "predictions": {
    "class_label": "PNEUMONIA VIRAL",
    "label": 2,
    "meta": {
      "description": "given a medical chest-x-ray image of a human being we are going to classify weather a person have pneumonia virus, pneumonia bacteria or none of those(normal).",
      "language": "python",
      "library": "pytorch",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class_label": "NORMAL",
        "label": 0,
        "probability": 0.15000000596046448
      },
      {
        "class_label": "PNEUMONIA BACTERIA",
        "label": 1,
        "probability": 0.10000000149011612
      },
      { "class_label": "PNEUMONIA VIRAL", "label": 2, "probability": 0.75 }
    ],
    "probability": 0.75
  },
  "success": true
}

Using curl

Make sure that you have the image named normal.jpeg in the current folder that you are running your cmd otherwise you have to provide an absolute or relative path to the image.

To make a curl POST request at http://localhost:3001/api/pneumonia with the file normal.jpeg we run the following command.

curl -X POST -F [email protected] http://127.0.0.1:3001/api/pneumonia

Using Postman client

To make this request with postman we do it as follows:

  1. Change the request method to POST
  2. Click on form-data
  3. Select type to be file on the KEY attribute
  4. For the KEY type image and select the image you want to predict under value
  5. Click send

If everything went well you will get the following response depending on the face you have selected:

{
  "predictions": {
    "class_label": "NORMAL",
    "label": 0,
    "meta": {
      "description": "given a medical chest-x-ray image of a human being we are going to classify weather a person have pneumonia virus, pneumonia bacteria or none of those(normal).",
      "language": "python",
      "library": "pytorch",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class_label": "NORMAL",
        "label": 0,
        "probability": 0.8500000238418579
      },
      {
        "class_label": "PNEUMONIA BACTERIA",
        "label": 1,
        "probability": 0.07000000029802322
      },
      {
        "class_label": "PNEUMONIA VIRAL",
        "label": 2,
        "probability": 0.07999999821186066
      }
    ],
    "probability": 0.8500000238418579
  },
  "success": true
}

Using JavaScript fetch api.

  1. First you need to get the input from html
  2. Create a formData object
  3. make a POST requests
res.json()) .then((data) => console.log(data));">
const input = document.getElementById("input").files[0];
let formData = new FormData();
formData.append("image", input);
fetch("http://127.0.0.1:3001/api/pneumonia", {
  method: "POST",
  body: formData,
})
  .then((res) => res.json())
  .then((data) => console.log(data));

If everything went well you will be able to get expected response.

{
  "predictions": {
    "class_label": "PNEUMONIA VIRAL",
    "label": 2,
    "meta": {
      "description": "given a medical chest-x-ray image of a human being we are going to classify weather a person have pneumonia virus, pneumonia bacteria or none of those(normal).",
      "language": "python",
      "library": "pytorch",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class_label": "NORMAL",
        "label": 0,
        "probability": 0.15000000596046448
      },
      {
        "class_label": "PNEUMONIA BACTERIA",
        "label": 1,
        "probability": 0.10000000149011612
      },
      { "class_label": "PNEUMONIA VIRAL", "label": 2, "probability": 0.75 }
    ],
    "probability": 0.75
  },
  "success": true
}

Notebooks

The ipynb notebook that i used for training the model and saving an .pt file was can be found:

  1. Model Training And Saving
Owner
crispengari
ai || software development. (creating brains using artificial neural nets to make softwares that has human mind.)
crispengari
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023