Open source code for the paper of Neural Sparse Voxel Fields.

Related tags

Deep LearningNSVF
Overview

Neural Sparse Voxel Fields (NSVF)

Project Page | Video | Paper | Data

Photo-realistic free-viewpoint rendering of real-world scenes using classical computer graphics techniques is a challenging problem because it requires the difficult step of capturing detailed appearance and geometry models. Neural rendering is an emerging field that employs deep neural networks to implicitly learn scene representations encapsulating both geometry and appearance from 2D observations with or without a coarse geometry. However, existing approaches in this field often show blurry renderings or suffer from slow rendering process. We propose Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering.

Here is the official repo for the paper:

We also provide our unofficial implementation for:

Table of contents



Requirements and Installation

This code is implemented in PyTorch using fairseq framework.

The code has been tested on the following system:

  • Python 3.7
  • PyTorch 1.4.0
  • Nvidia apex library (optional)
  • Nvidia GPU (Tesla V100 32GB) CUDA 10.1

Only learning and rendering on GPUs are supported.

To install, first clone this repo and install all dependencies:

pip install -r requirements.txt

Then, run

pip install --editable ./

Or if you want to install the code locally, run:

python setup.py build_ext --inplace

Dataset

You can download the pre-processed synthetic and real datasets used in our paper. Please also cite the original papers if you use any of them in your work.

Dataset Download Link Notes on Dataset Split
Synthetic-NSVF download (.zip) 0_* (training) 1_* (validation) 2_* (testing)
Synthetic-NeRF download (.zip) 0_* (training) 1_* (validation) 2_* (testing)
BlendedMVS download (.zip) 0_* (training) 1_* (testing)
Tanks&Temples download (.zip) 0_* (training) 1_* (testing)

Prepare your own dataset

To prepare a new dataset of a single scene for training and testing, please follow the data structure:

<dataset_name>
|-- bbox.txt         # bounding-box file
|-- intrinsics.txt   # 4x4 camera intrinsics
|-- rgb
    |-- 0.png        # target image for each view
    |-- 1.png
    ...
|-- pose
    |-- 0.txt        # camera pose for each view (4x4 matrices)
    |-- 1.txt
    ...
[optional]
|-- test_traj.txt    # camera pose for free-view rendering demonstration (4N x 4)

where the bbox.txt file contains a line describing the initial bounding box and voxel size:

x_min y_min z_min x_max y_max z_max initial_voxel_size

Note that the file names of target images and those of the corresponding camera pose files are not required to be exactly the same. However, the orders of these two kinds of files (sorted by string) must match. The datasets are split with view indices. For example, "train (0..100), valid (100..200) and test (200..400)" mean the first 100 views for training, 100-199th views for validation, and 200-399th views for testing.

Train a new model

Given the dataset of a single scene ({DATASET}), we use the following command for training an NSVF model to synthesize novel views at 800x800 pixels, with a batch size of 4 images per GPU and 2048 rays per image. By default, the code will automatically detect all available GPUs.

In the following example, we use a pre-defined architecture nsvf_base with specific arguments:

  • By setting --no-sampling-at-reader, the model only samples pixels in the projected image region of sparse voxels for training.
  • By default, we set the ray-marching step size to be the ratio 1/8 (0.125) of the voxel size which is typically described in the bbox.txt file.
  • It is optional to turn on --use-octree. It will build a sparse voxel octree to speed-up the ray-voxel intersection especially when the number of voxels is larger than 10000.
  • By setting --pruning-every-steps as 2500, the model performs self-pruning at every 2500 steps.
  • By setting --half-voxel-size-at and --reduce-step-size-at as 5000,25000,75000, the voxel size and step size are halved at 5k, 25k and 75k, respectively.

Note that, although above parameter settings are used for most of the experiments in the paper, it is possible to tune these parameters to achieve better quality. Besides the above parameters, other parameters can also use default settings.

Besides the architecture nsvf_base, you may check other architectures or define your own architectures in the file fairnr/models/nsvf.py.

python -u train.py ${DATASET} \
    --user-dir fairnr \
    --task single_object_rendering \
    --train-views "0..100" --view-resolution "800x800" \
    --max-sentences 1 --view-per-batch 4 --pixel-per-view 2048 \
    --no-preload \
    --sampling-on-mask 1.0 --no-sampling-at-reader \
    --valid-views "100..200" --valid-view-resolution "400x400" \
    --valid-view-per-batch 1 \
    --transparent-background "1.0,1.0,1.0" --background-stop-gradient \
    --arch nsvf_base \
    --initial-boundingbox ${DATASET}/bbox.txt \
    --use-octree \
    --raymarching-stepsize-ratio 0.125 \
    --discrete-regularization \
    --color-weight 128.0 --alpha-weight 1.0 \
    --optimizer "adam" --adam-betas "(0.9, 0.999)" \
    --lr 0.001 --lr-scheduler "polynomial_decay" --total-num-update 150000 \
    --criterion "srn_loss" --clip-norm 0.0 \
    --num-workers 0 \
    --seed 2 \
    --save-interval-updates 500 --max-update 150000 \
    --virtual-epoch-steps 5000 --save-interval 1 \
    --half-voxel-size-at  "5000,25000,75000" \
    --reduce-step-size-at "5000,25000,75000" \
    --pruning-every-steps 2500 \
    --keep-interval-updates 5 --keep-last-epochs 5 \
    --log-format simple --log-interval 1 \
    --save-dir ${SAVE} \
    --tensorboard-logdir ${SAVE}/tensorboard \
    | tee -a $SAVE/train.log

The checkpoints are saved in {SAVE}. You can launch tensorboard to check training progress:

tensorboard --logdir=${SAVE}/tensorboard --port=10000

There are more examples of training scripts to reproduce the results of our paper under examples.

Evaluation

Once the model is trained, the following command is used to evaluate rendering quality on the test views given the {MODEL_PATH}.

python validate.py ${DATASET} \
    --user-dir fairnr \
    --valid-views "200..400" \
    --valid-view-resolution "800x800" \
    --no-preload \
    --task single_object_rendering \
    --max-sentences 1 \
    --valid-view-per-batch 1 \
    --path ${MODEL_PATH} \
    --model-overrides '{"chunk_size":512,"raymarching_tolerance":0.01,"tensorboard_logdir":"","eval_lpips":True}' \

Note that we override the raymarching_tolerance to 0.01 to enable early termination for rendering speed-up.

Free Viewpoint Rendering

Free-viewpoint rendering can be achieved once a model is trained and a rendering trajectory is specified. For example, the following command is for rendering with a circle trajectory (angular speed 3 degree/frame, 15 frames per GPU). This outputs per-view rendered images and merge the images into a .mp4 video in ${SAVE}/output as follows:

By default, the code can detect all available GPUs.

python render.py ${DATASET} \
    --user-dir fairnr \
    --task single_object_rendering \
    --path ${MODEL_PATH} \
    --model-overrides '{"chunk_size":512,"raymarching_tolerance":0.01}' \
    --render-beam 1 --render-angular-speed 3 --render-num-frames 15 \
    --render-save-fps 24 \
    --render-resolution "800x800" \
    --render-path-style "circle" \
    --render-path-args "{'radius': 3, 'h': 2, 'axis': 'z', 't0': -2, 'r':-1}" \
    --render-output ${SAVE}/output \
    --render-output-types "color" "depth" "voxel" "normal" --render-combine-output \
    --log-format "simple"

Our code also supports rendering for given camera poses. For instance, the following command is for rendering with the camera poses defined in the 200-399th files under folder ${DATASET}/pose:

python render.py ${DATASET} \
    --user-dir fairnr \
    --task single_object_rendering \
    --path ${MODEL_PATH} \
    --model-overrides '{"chunk_size":512,"raymarching_tolerance":0.01}' \
    --render-save-fps 24 \
    --render-resolution "800x800" \
    --render-camera-poses ${DATASET}/pose \
    --render-views "200..400" \
    --render-output ${SAVE}/output \
    --render-output-types "color" "depth" "voxel" "normal" --render-combine-output \
    --log-format "simple"

The code also supports rendering with camera poses defined in a .txt file. Please refer to this example.

Extract the Geometry

We also support running marching cubes to extract the iso-surfaces as triangle meshes from a trained NSVF model and saved as {SAVE}/{NAME}.ply.

python extract.py \
    --user-dir fairnr \
    --path ${MODEL_PATH} \
    --output ${SAVE} \
    --name ${NAME} \
    --format 'mc_mesh' \
    --mc-threshold 0.5 \
    --mc-num-samples-per-halfvoxel 5

It is also possible to export the learned sparse voxels by setting --format 'voxel_mesh'. The output .ply file can be opened with any 3D viewers such as MeshLab.

License

NSVF is MIT-licensed. The license applies to the pre-trained models as well.

Citation

Please cite as

@article{liu2020neural,
  title={Neural Sparse Voxel Fields},
  author={Liu, Lingjie and Gu, Jiatao and Lin, Kyaw Zaw and Chua, Tat-Seng and Theobalt, Christian},
  journal={NeurIPS},
  year={2020}
}
Owner
Meta Research
Meta Research
PyTorch implementation for "Mining Latent Structures with Contrastive Modality Fusion for Multimedia Recommendation"

MIRCO PyTorch implementation for paper: Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation Dependencies Python 3.

Big Data and Multi-modal Computing Group, CRIPAC 9 Dec 08, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan Erdoğan 2 Mar 21, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
KaziText is a tool for modelling common human errors.

KaziText KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatic

ÚFAL 3 Nov 24, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022