The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Overview

Generative Modeling with Optimal Transport Maps

The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022. It focuses on Optimal Transport Modeling (OTM) in ambient space, e.g. spaces of high-dimensional images. While analogous approaches consider OT maps in the latent space of an autoencoder, this paper focuses on fitting an OT map directly between noise and ambient space. The method is evaluated on generative modeling and unpaired image restoration tasks. In particular, large-scale computer vision problems, such as denoising, colorization, and inpainting are considered in unpaired image restoration. The overall pipeline of OT as generative map and OT as cost of generative model is given below.

Latent Space Optimal Transport

Our method is different from the prevalent approach of OT in the latent space shown below.

Ambient Space Mass Transport

The scheme of our approach for learning OT maps between unequal dimensions.

Prerequisites

The implementation is GPU-based. Single GPU (V100) is enough to run each experiment. Tested with torch==1.4.0 torchvision==0.5.0. To reproduce the reported results, consider using the exact version of PyTorch and its required dependencies as other versions might be incompatible.

Repository structure

All the experiments are issued in the form of pretty self-explanatory python codes.

Main Experiments

Execute the following commands in the source folder.

Training

  • python otm_mnist_32x22.py --train 1 -- OTM between noise and MNIST, 32x32, Grayscale;
  • python otm_cifar_32x32.py --train 1 -- OTM between noise and CIFAR10, 32x32, RGB;
  • python otm_celeba_64x64.py --train 1 -- OTM between noise and CelebA, 64x64, RGB;
  • python otm_celeba_denoise_64x64.py --train 1 -- OTM for unpaired denoising on CelebA, 64x64, RGB;
  • python otm_celeba_colorization_64x64.py --train 1 -- OTM for unpaired colorization on CelebA, 64x64, RGB;
  • python otm_celeba_inpaint_64x64.py --train 1 -- OTM unpaired inpainting on CelebA, 64x64, RGB.

Run inference with the best iteration.

Inference

  • python otm_mnist_32x32.py --inference 1 --init_iter 100000
  • python otm_cifar_32x32.py --inference 1 --init_iter 100000
  • python otm_celeba_64x64.py --inference 1 --init_iter 100000
  • python otm_celeba_denoise_64x64.py --inference 1 --init_iter 100000
  • python otm_celeba_colorization_64x64.py --inference 1 --init_iter 100000
  • python otm_celeba_inpaint_64x64.py --inference 1 --init_iter 100000

Toy Experiments in 2D

  • source/toy/OTM-GO MoG.ipynb -- Mixture of 8 Gaussians;
  • source/toy/OTM-GO Moons.ipynb -- Two Moons;
  • source/toy/OTM-GO Concentric Circles.ipynb -- Concentric Circles;
  • source/toy/OTM-GO S Curve.ipynb -- S Curve;
  • source/toy/OTM-GO Swirl.ipynb -- Swirl.

Refer to Credit Section for baselines.

Results

Optimal transport modeling between high-dimensional noise and ambient space.

Randomly generated samples

Optimal transport modeling for unpaired image restoration tasks.

Following is the experimental setup that is considered for unpaired image restoration.

OTM for image denoising on test C part of CelebA, 64 × 64.

OTM for image colorization on test C part of CelebA, 64 × 64.

OTM for image inpainting on test C part of CelebA, 64 × 64.

Optimal transport modeling for toy examples.

OTM in low-dimensional space, 2D.

Credits

Owner
Litu Rout
I am broadly interested in Optimization, Statistical Learning Theory, Interactive Machine Learning, and Optimal Transport.
Litu Rout
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Rishabh Anand 24 Mar 23, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022