A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

Overview

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

This repository contains the source code (developed using TensorFlow 2.1.0 and Keras 2.3.0) for the proposed incremental instance segmentation framework.

Block-Diagram

Block Diagram of the Proposed Framework

The documentation related to installation, configuration, dataset, training protocols is given below. Moroever, the detailed architectural description of the CIE-Net is available in 'model_summary.txt' file.

Installation and Configuration

  1. Platform: Anaconda and MATLAB R2020a (with deep learning, image processing and computer vision toolbox).

  2. Install required packages from the provided ‘environment.yml’ file or alternatively you can install following packages yourself:

    • Python 3.7.9 or above
    • TensorFlow 2.1.0 or above
    • Keras 2.3.0 or above
    • OpenCV 4.2 or above
    • imgaug 0.2.9 or above
    • tqdm
  3. Download the desired dataset (the dataset description file is also available in this repository):

  4. The mask-level annotations for the baggage X-ray datasets can be downloaded from the following links:

  5. The box-level annotations for both baggage X-ray datasets are already released by the dataset authors.

  6. For COCO dataset, please use the MaskAPIs (provided by the dataset authors) to generate the mask-level and box-level annotations from the JSON files. We have also uploaded these APIs within this repository.

  7. For training, please provide the training configurations of the desired dataset in ‘config.py’ file.

  8. Afterward, create the two folders named as 'trainingDataset' and 'testingDataset', and arrange the dataset scans w.r.t the following hierarchy:

├── trainingDataset
│   ├── trainGT_1
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_n.png
│   ...
│   ├── trainGT_K
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_m.png
│   ├── trainImages_1
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_n.png
│   ...
│   ├── trainImages_K
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_m.png
│   ├── valGT_1
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_o.png
│   ...
│   ├── valGT_K
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_p.png
│   ├── valImages_1
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_o.png
│   ...
│   ├── valImages_K
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_p.png

├── testingDataset
│   ├── test_images
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ├── test_annotations
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ├── segmentation_results1
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ...
│   ├── segmentation_resultsK
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
- Note: the images and annotations should have same name and extension (preferably png).
  1. The 'segmentation_resultsK' folder in 'testingDataset' will contains the results of K-instance-aware segmentation.
  2. The summary of the proposed CIE-Net model is available in 'model_summary.txt'.

Steps

  1. Use 'trainer.py' to incrementally train the CIE-Net. The following script will also save the model instances in the h5 file. For MvRF-CNN, use 'trainer2.py' script.
  2. Use 'tester.py' file to extract segmentation results for each model instance (the model results will be saved in 'segmentation_resultsk' folder for kth model instance). For MvRF-CNN, use 'tester2.py' script.
  3. We have also provided some converter scripts to convert e.g. original SIXray XML annotations into MATLAB structures, to port TF keras models into MATLAB etc.
  4. Also, we have provided some utility files (in the 'utils' folder) to resize dataset scans, to generate bounding boxes from CIE-Net mask output, to change the coloring scheme of the CIE-Net outputs for better visualization, and to apply post-processing etc.
  5. Please note that to run MvRF-CNN, the images have to be resized to the resolution of 320x240x3. The resizer script is in the 'utils' folder.

Citation

If you use the proposed incremental instance segmentation framework (or any part of this code) in your work, then please cite the following paper:

@article{cienet,
  title   = {A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items},
  author  = {Taimur Hassan and Samet Akcay and Mohammed Bennamoun and Salman Khan and Naoufel Werghi},
  journal = {IEEE Transactions on Systems, Man, and Cybernetics: Systems},
  year = {2021}
}

Contact

Please feel free to contact us in case of any query at: [email protected]

Owner
Taimur Hassan
Taimur Hassan
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022