A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

Overview

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

This repository contains the source code (developed using TensorFlow 2.1.0 and Keras 2.3.0) for the proposed incremental instance segmentation framework.

Block-Diagram

Block Diagram of the Proposed Framework

The documentation related to installation, configuration, dataset, training protocols is given below. Moroever, the detailed architectural description of the CIE-Net is available in 'model_summary.txt' file.

Installation and Configuration

  1. Platform: Anaconda and MATLAB R2020a (with deep learning, image processing and computer vision toolbox).

  2. Install required packages from the provided ‘environment.yml’ file or alternatively you can install following packages yourself:

    • Python 3.7.9 or above
    • TensorFlow 2.1.0 or above
    • Keras 2.3.0 or above
    • OpenCV 4.2 or above
    • imgaug 0.2.9 or above
    • tqdm
  3. Download the desired dataset (the dataset description file is also available in this repository):

  4. The mask-level annotations for the baggage X-ray datasets can be downloaded from the following links:

  5. The box-level annotations for both baggage X-ray datasets are already released by the dataset authors.

  6. For COCO dataset, please use the MaskAPIs (provided by the dataset authors) to generate the mask-level and box-level annotations from the JSON files. We have also uploaded these APIs within this repository.

  7. For training, please provide the training configurations of the desired dataset in ‘config.py’ file.

  8. Afterward, create the two folders named as 'trainingDataset' and 'testingDataset', and arrange the dataset scans w.r.t the following hierarchy:

├── trainingDataset
│   ├── trainGT_1
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_n.png
│   ...
│   ├── trainGT_K
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_m.png
│   ├── trainImages_1
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_n.png
│   ...
│   ├── trainImages_K
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_m.png
│   ├── valGT_1
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_o.png
│   ...
│   ├── valGT_K
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_p.png
│   ├── valImages_1
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_o.png
│   ...
│   ├── valImages_K
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_p.png

├── testingDataset
│   ├── test_images
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ├── test_annotations
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ├── segmentation_results1
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ...
│   ├── segmentation_resultsK
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
- Note: the images and annotations should have same name and extension (preferably png).
  1. The 'segmentation_resultsK' folder in 'testingDataset' will contains the results of K-instance-aware segmentation.
  2. The summary of the proposed CIE-Net model is available in 'model_summary.txt'.

Steps

  1. Use 'trainer.py' to incrementally train the CIE-Net. The following script will also save the model instances in the h5 file. For MvRF-CNN, use 'trainer2.py' script.
  2. Use 'tester.py' file to extract segmentation results for each model instance (the model results will be saved in 'segmentation_resultsk' folder for kth model instance). For MvRF-CNN, use 'tester2.py' script.
  3. We have also provided some converter scripts to convert e.g. original SIXray XML annotations into MATLAB structures, to port TF keras models into MATLAB etc.
  4. Also, we have provided some utility files (in the 'utils' folder) to resize dataset scans, to generate bounding boxes from CIE-Net mask output, to change the coloring scheme of the CIE-Net outputs for better visualization, and to apply post-processing etc.
  5. Please note that to run MvRF-CNN, the images have to be resized to the resolution of 320x240x3. The resizer script is in the 'utils' folder.

Citation

If you use the proposed incremental instance segmentation framework (or any part of this code) in your work, then please cite the following paper:

@article{cienet,
  title   = {A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items},
  author  = {Taimur Hassan and Samet Akcay and Mohammed Bennamoun and Salman Khan and Naoufel Werghi},
  journal = {IEEE Transactions on Systems, Man, and Cybernetics: Systems},
  year = {2021}
}

Contact

Please feel free to contact us in case of any query at: [email protected]

Owner
Taimur Hassan
Taimur Hassan
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
Pyramid Scene Parsing Network, CVPR2017.

Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This

Hengshuang Zhao 1.5k Jan 05, 2023
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022