Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Overview

Flickr-Faces-HQ Dataset (FFHQ)

Python 3.6 License CC Format PNG Resolution 1024×1024 Images 70000

Teaser image

Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN):

A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA)
https://arxiv.org/abs/1812.04948

The dataset consists of 70,000 high-quality PNG images at 1024×1024 resolution and contains considerable variation in terms of age, ethnicity and image background. It also has good coverage of accessories such as eyeglasses, sunglasses, hats, etc. The images were crawled from Flickr, thus inheriting all the biases of that website, and automatically aligned and cropped using dlib. Only images under permissive licenses were collected. Various automatic filters were used to prune the set, and finally Amazon Mechanical Turk was used to remove the occasional statues, paintings, or photos of photos.

For business inquiries, please contact [email protected]

For press and other inquiries, please contact Hector Marinez at [email protected]

Licenses

The individual images were published in Flickr by their respective authors under either Creative Commons BY 2.0, Creative Commons BY-NC 2.0, Public Domain Mark 1.0, Public Domain CC0 1.0, or U.S. Government Works license. All of these licenses allow free use, redistribution, and adaptation for non-commercial purposes. However, some of them require giving appropriate credit to the original author, as well as indicating any changes that were made to the images. The license and original author of each image are indicated in the metadata.

The dataset itself (including JSON metadata, download script, and documentation) is made available under Creative Commons BY-NC-SA 4.0 license by NVIDIA Corporation. You can use, redistribute, and adapt it for non-commercial purposes, as long as you (a) give appropriate credit by citing our paper, (b) indicate any changes that you've made, and (c) distribute any derivative works under the same license.

Overview

All data is hosted on Google Drive:

Path Size Files Format Description
ffhq-dataset 2.56 TB 210,014 Main folder
├  ffhq-dataset-v2.json 255 MB 1 JSON Metadata including copyright info, URLs, etc.
├  images1024x1024 89.1 GB 70,000 PNG Aligned and cropped images at 1024×1024
├  thumbnails128x128 1.95 GB 70,000 PNG Thumbnails at 128×128
├  in-the-wild-images 955 GB 70,000 PNG Original images from Flickr
├  tfrecords 273 GB 9 tfrecords Multi-resolution data for StyleGAN and StyleGAN2
└  zips 1.28 TB 4 ZIP Contents of each folder as a ZIP archive.

High-level statistics:

Pie charts

For use cases that require separate training and validation sets, we have appointed the first 60,000 images to be used for training and the remaining 10,000 for validation. In the StyleGAN paper, however, we used all 70,000 images for training.

We have explicitly made sure that there are no duplicate images in the dataset itself. However, please note that the in-the-wild folder may contain multiple copies of the same image in cases where we extracted several different faces from the same image.

Download script

You can either grab the data directly from Google Drive or use the provided download script. The script makes things considerably easier by automatically downloading all the requested files, verifying their checksums, retrying each file several times on error, and employing multiple concurrent connections to maximize bandwidth.

> python download_ffhq.py -h
usage: download_ffhq.py [-h] [-j] [-s] [-i] [-t] [-w] [-r] [-a]
                        [--num_threads NUM] [--status_delay SEC]
                        [--timing_window LEN] [--chunk_size KB]
                        [--num_attempts NUM]

Download Flickr-Face-HQ (FFHQ) dataset to current working directory.

optional arguments:
  -h, --help            show this help message and exit
  -j, --json            download metadata as JSON (254 MB)
  -s, --stats           print statistics about the dataset
  -i, --images          download 1024x1024 images as PNG (89.1 GB)
  -t, --thumbs          download 128x128 thumbnails as PNG (1.95 GB)
  -w, --wilds           download in-the-wild images as PNG (955 GB)
  -r, --tfrecords       download multi-resolution TFRecords (273 GB)
  -a, --align           recreate 1024x1024 images from in-the-wild images
  --num_threads NUM     number of concurrent download threads (default: 32)
  --status_delay SEC    time between download status prints (default: 0.2)
  --timing_window LEN   samples for estimating download eta (default: 50)
  --chunk_size KB       chunk size for each download thread (default: 128)
  --num_attempts NUM    number of download attempts per file (default: 10)
  --random-shift SHIFT  standard deviation of random crop rectangle jitter
  --retry-crops         retry random shift if crop rectangle falls outside image (up to 1000
                        times)
  --no-rotation         keep the original orientation of images
  --no-padding          do not apply blur-padding outside and near the image borders
  --source-dir DIR      where to find already downloaded FFHQ source data
> python ..\download_ffhq.py --json --images
Downloading JSON metadata...
\ 100.00% done  2/2 files  0.25/0.25 GB   43.21 MB/s  ETA: done
Parsing JSON metadata...
Downloading 70000 files...
| 100.00% done  70001/70001 files  89.19 GB/89.19 GB  59.87 MB/s  ETA: done

The script also serves as a reference implementation of the automated scheme that we used to align and crop the images. Once you have downloaded the in-the-wild images with python download_ffhq.py --wilds, you can run python download_ffhq.py --align to reproduce exact replicas of the aligned 1024×1024 images using the facial landmark locations included in the metadata.

Reproducing the unaligned FFHQ

To reproduce the "unaligned FFHQ" dataset as used in the Alias-Free Generative Adversarial Networks paper, use the following options:

python download_ffhq.py \
    --source-dir 
   
     \
    --align --no-rotation --random-shift 0.2 --no-padding --retry-crops

   

Metadata

The ffhq-dataset-v2.json file contains the following information for each image in a machine-readable format:

{
  "0": {                                                 # Image index
    "category": "training",                              # Training or validation
    "metadata": {                                        # Info about the original Flickr photo:
      "photo_url": "https://www.flickr.com/photos/...",  # - Flickr URL
      "photo_title": "DSCF0899.JPG",                     # - File name
      "author": "Jeremy Frumkin",                        # - Author
      "country": "",                                     # - Country where the photo was taken
      "license": "Attribution-NonCommercial License",    # - License name
      "license_url": "https://creativecommons.org/...",  # - License detail URL
      "date_uploaded": "2007-08-16",                     # - Date when the photo was uploaded to Flickr
      "date_crawled": "2018-10-10"                       # - Date when the photo was crawled from Flickr
    },
    "image": {                                           # Info about the aligned 1024x1024 image:
      "file_url": "https://drive.google.com/...",        # - Google Drive URL
      "file_path": "images1024x1024/00000/00000.png",    # - Google Drive path
      "file_size": 1488194,                              # - Size of the PNG file in bytes
      "file_md5": "ddeaeea6ce59569643715759d537fd1b",    # - MD5 checksum of the PNG file
      "pixel_size": [1024, 1024],                        # - Image dimensions
      "pixel_md5": "47238b44dfb87644460cbdcc4607e289",   # - MD5 checksum of the raw pixel data
      "face_landmarks": [...]                            # - 68 face landmarks reported by dlib
    },
    "thumbnail": {                                       # Info about the 128x128 thumbnail:
      "file_url": "https://drive.google.com/...",        # - Google Drive URL
      "file_path": "thumbnails128x128/00000/00000.png",  # - Google Drive path
      "file_size": 29050,                                # - Size of the PNG file in bytes
      "file_md5": "bd3e40b2ba20f76b55dc282907b89cd1",    # - MD5 checksum of the PNG file
      "pixel_size": [128, 128],                          # - Image dimensions
      "pixel_md5": "38d7e93eb9a796d0e65f8c64de8ba161"    # - MD5 checksum of the raw pixel data
    },
    "in_the_wild": {                                     # Info about the in-the-wild image:
      "file_url": "https://drive.google.com/...",        # - Google Drive URL
      "file_path": "in-the-wild-images/00000/00000.png", # - Google Drive path
      "file_size": 3991569,                              # - Size of the PNG file in bytes
      "file_md5": "1dc0287e73e485efb0516a80ce9d42b4",    # - MD5 checksum of the PNG file
      "pixel_size": [2016, 1512],                        # - Image dimensions
      "pixel_md5": "86b3470c42e33235d76b979161fb2327",   # - MD5 checksum of the raw pixel data
      "face_rect": [667, 410, 1438, 1181],               # - Axis-aligned rectangle of the face region
      "face_landmarks": [...],                           # - 68 face landmarks reported by dlib
      "face_quad": [...]                                 # - Aligned quad of the face region
    }
  },
  ...
}

Acknowledgements

We thank Jaakko Lehtinen, David Luebke, and Tuomas Kynkäänniemi for in-depth discussions and helpful comments; Janne Hellsten, Tero Kuosmanen, and Pekka Jänis for compute infrastructure and help with the code release.

We also thank Vahid Kazemi and Josephine Sullivan for their work on automatic face detection and alignment that enabled us to collect the data in the first place:

One Millisecond Face Alignment with an Ensemble of Regression Trees
Vahid Kazemi, Josephine Sullivan
Proc. CVPR 2014
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Kazemi_One_Millisecond_Face_2014_CVPR_paper.pdf

Privacy

When collecting the data, we were careful to only include photos that – to the best of our knowledge – were intended for free use and redistribution by their respective authors. That said, we are committed to protecting the privacy of individuals who do not wish their photos to be included.

To find out whether your photo is included in the Flickr-Faces-HQ dataset, please click this link to search the dataset with your Flickr username.

To get your photo removed from the Flickr-Faces-HQ dataset:

  1. Go to Flickr and do one of the following:
    • Tag the photo with no_cv to indicate that you do not wish it to be used for computer vision research.
    • Change the license of the photo to None (All rights reserved) or any Creative Commons license with NoDerivs to indicate that you do not want it to be redistributed.
    • Make the photo private, i.e., only visible to you and your friends/family.
    • Get the photo removed from Flickr altogether.
  2. Contact [email protected]. Please include your Flickr username in the email.
  3. We will check the status of all photos from the particular user and update the dataset accordingly.
Owner
NVIDIA Research Projects
NVIDIA Research Projects
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception, IROS 2021

For academic use only. Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception Ziwei Wang, Liyuan Pan, Yonhon Ng, Zheyu Zhuang and Robert Mahony Th

Ziwei Wang 11 Jan 04, 2023
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
Automatic self-diagnosis program (python required)Automatic self-diagnosis program (python required)

auto-self-checker 자동으로 자가진단 해주는 프로그램(python 필요) 중요 이 프로그램이 실행될때에는 절대로 마우스포인터를 움직이거나 키보드를 건드리면 안된다(화면인식, 마우스포인터로 직접 클릭) 사용법 프로그램을 구동할 폴더 내의 cmd창에서 pip

1 Dec 30, 2021
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022