Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Overview

PWC PWC PWC PWC

Introdunction

This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Abstract

This paper presents a simple and effective approach to solving the multi-label classification problem. The proposed approach leverages Transformer decoders to query the existence of a class label. The use of Transformer is rooted in the need of extracting local discriminative features adaptively for different labels, which is a strongly desired property due to the existence of multiple objects in one image. The built-in cross-attention module in the Transformer decoder offers an effective way to use label embeddings as queries to probe and pool class-related features from a feature map computed by a vision backbone for subsequent binary classifications. Compared with prior works, the new framework is simple, using standard Transformers and vision backbones, and effective, consistently outperforming all previous works on five multi-label classification data sets, including MS-COCO, PASCAL VOC, NUS-WIDE, and Visual Genome. Particularly, we establish 91.3% mAP on MS-COCO. We hope its compact structure, simple implementation, and superior performance serve as a strong baseline for multi-label classification tasks and future studies.

fig

Results on MS-COCO:

fig

Quick start

  1. (optional) Star this repo.

  2. Clone this repo:

git clone [email protected]:SlongLiu/query2labels.git
cd query2labels
  1. Install cuda, PyTorch and torchvision.

Please make sure they are compatible. We test our models on two envs and other configs may also work:

cuda==11, torch==1.9.0, torchvision==0.10.0, python==3.7.3
or
cuda==10.2, torch==1.6.0, torchvision==0.7.0, python==3.7.3
  1. Install other needed packages.
pip install -r requirments.txt
  1. Data preparation.

Download MS-COCO 2014 and modify the path in lib/dataset/cocodataset.py: line 24, 25.

  1. Download pretrained models.

You could download pretrained models from this link. See more details below.

  1. Run!
python q2l_infer.py -a modelname --config /path/to/json/file --resume /path/to/pkl/file [other args]
e.g.
python q2l_infer.py -a 'Q2L-R101-448' --config "pretrained/Q2L-R101-448/config_new.json" -b 16 --resume 'pretrained/Q2L-R101-448/checkpoint.pkl'

pretrianed model

Modelname mAP link(Tsinghua-cloud)
Q2L-R101-448 84.9 this link
Q2L-R101-576 86.5 this link
Q2L-TResL-448 87.3 this link
Q2L-TResL_22k-448 89.2 this link
Q2L-SwinL-384 90.5 this link
Q2L-CvT_w24-384 91.3 this link

Training

Training scripts will be available later.

BibTex

@misc{liu2021query2label,
      title={Query2Label: A Simple Transformer Way to Multi-Label Classification}, 
      author={Shilong Liu and Lei Zhang and Xiao Yang and Hang Su and Jun Zhu},
      year={2021},
      eprint={2107.10834},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

We thank the authors of ASL, TResNet, detr, CvT, and Swin-Transformer for their great works and codes. Thanks to @mrT23 for sharing training tricks and providing a useful script for training.

Owner
Shilong Liu
A spicy chicken. www.lsl.zone
Shilong Liu
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
Vikrant Deshpande 1 Nov 17, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022