OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

Overview

OrienMask

This repository implements the framework OrienMask for real-time instance segmentation.

It achieves 34.8 mask AP on COCO test-dev at the speed of 42.7 FPS evaluated with a single RTX 2080Ti. (log)

Paper: Real-time Instance Segmentation with Discriminative Orientation Maps

Installation

Please see INSTALL.md to prepare the environment and dataset.

Usage

Place the pre-trained backbone (link) and trained model (link) as follows for convenience (otherwise update the corresponding path in configurations):

├── checkpoints
│   ├── pretrained
│   │   ├──pretrained_darknet53.pth
│   ├── OrienMaskAnchor4FPNPlus
│   │   ├──orienmask_yolo.pth

train

Three items should be noticed when deploying different number of GPUs: n_gpu, batch_size, accumulate. Keep in mind that the approximate batch size equals to n_gpu * batch_size * accumulate.

# multi-gpu train (n_gpu=2, batch_size=8, accumulate=1)
# if necessary, set MASTER_PORT to avoid port conflict
# if permission error, run `chmod +x dist_train.sh`
CUDA_VISIBLE_DEVICES=0,1 ./dist_train.sh \
    -c orienmask_yolo_coco_544_anchor4_fpn_plus

# single-gpu train (n_gpu=1, batch_size=8, accumulate=2)
CUDA_VISIBLE_DEVICES=0 ./dist_train.sh \
    -c orienmask_yolo_coco_544_anchor4_fpn_plus
# or
CUDA_VISIBLE_DEVICES=0 python train.py \
    -c orienmask_yolo_coco_544_anchor4_fpn_plus

test

Run the following command to obtain AP and AR metrics on val2017 split:

CUDA_VISIBLE_DEVICES=0 python test.py \
    -c orienmask_yolo_coco_544_anchor4_fpn_plus_test \
    -w checkpoints/OrienMaskAnchor4FPNPlus/orienmask_yolo.pth

infer

Please run python infer.py -h for more usages.

# infer on an image and save the visualized result
CUDA_VISIBLE_DEVICES=0 python infer.py \
    -c orienmask_yolo_coco_544_anchor4_fpn_plus_infer \
    -w checkpoints/OrienMaskAnchor4FPNPlus/orienmask_yolo.pth \
    -i assets/000000163126.jpg -v -o outputs

# infer on a list of images and save the visualized results
CUDA_VISIBLE_DEVICES=0 python infer.py \
    -c orienmask_yolo_coco_544_anchor4_fpn_plus_infer \
    -w checkpoints/OrienMaskAnchor4FPNPlus/orienmask_yolo.pth \
    -d coco/test2017 -l assets/test_dev_selected.txt -v -o outputs

logs

We provide two types of logs for monitoring the training process. The first is updated on the terminal which is also stored in a train.log file in the checkpoint directory. The other is the tensorboard whose statistics are kept in the checkpoint directory.

Citation

@article{du2021realtime,
  title={Real-time Instance Segmentation with Discriminative Orientation Maps}, 
  author={Du, Wentao and Xiang, Zhiyu and Chen, Shuya and Qiao, Chengyu and Chen, Yiman and Bai, Tingming},
  journal={arXiv preprint arXiv:2106.12204},
  year={2021}
}
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.

PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module

CARME Antoine 405 Jan 02, 2023
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022