Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Overview

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Work accepted at NeurIPS'21 [paper, video].

If you use this code in an academic context, please cite our work:

@article{hagenaarsparedesvalles2021ssl,
  title={Self-Supervised Learning of Event-Based Optical Flow with Spiking Neural Networks},
  author={Hagenaars, Jesse and Paredes-Vall\'es, Federico and de Croon, Guido},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

This code allows for the reproduction of the experiments leading to the results in Section 4.1.

Usage

This project uses Python >= 3.7.3 and we strongly recommend the use of virtual environments. If you don't have an environment manager yet, we recommend pyenv. It can be installed via:

curl https://pyenv.run | bash

Make sure your ~/.bashrc file contains the following:

export PATH="$HOME/.pyenv/bin:$PATH"
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"

After that, restart your terminal and run:

pyenv update

To set up your environment with pyenv first install the required python distribution and make sure the installation is successful (i.e., no errors nor warnings):

pyenv install -v 3.7.3

Once this is done, set up the environment and install the required libraries:

pyenv virtualenv 3.7.3 event_flow
pyenv activate event_flow

pip install --upgrade pip==20.0.2

cd event_flow/
pip install -r requirements.txt

Download datasets

In this work, we use multiple datasets:

These datasets can be downloaded in the expected HDF5 data format from here, and are expected at event_flow/datasets/data/ (as shown above).

Download size: 19.4 GB. Uncompressed size: 94 GB.

Details about the structure of these files can be found in event_flow/datasets/tools/.

Download models

The pretrained models can be downloaded from here, and are expected at event_flow/mlruns/.

In this project we use MLflow to keep track of the experiments. To visualize the models that are available, alongside other useful details and evaluation metrics, run the following from the home directory of the project:

mlflow ui

and access http://127.0.0.1:5000 from your browser of choice.

Inference

To estimate optical flow from event sequences from the MVSEC dataset and compute the average endpoint error and percentage of outliers, run:

python eval_flow.py <model_name> --config configs/eval_MVSEC.yml

# for example:
python eval_flow.py LIFFireNet --config configs/eval_MVSEC.yml

where <model_name> is the name of MLflow run to be evaluated. Note that, if a run does not have a name (this would be the case for your own trained models), you can evaluated it through its run ID (also visible through MLflow).

To estimate optical flow from event sequences from the ECD or HQF datasets, run:

python eval_flow.py <model_name> --config configs/eval_ECD.yml
python eval_flow.py <model_name> --config configs/eval_HQF.yml

# for example:
python eval_flow.py LIFFireNet --config configs/eval_ECD.yml

Note that the ECD and HQF datasets lack ground truth optical flow data. Therefore, we evaluate the quality of the estimated event-based optical flow via the self-supervised FWL (Stoffregen and Scheerlinck, ECCV'20) and RSAT (ours, Appendix C) metrics.

Results from these evaluations are stored as MLflow artifacts.

In configs/, you can find the configuration files associated to these scripts and vary the inference settings (e.g., number of input events, activate/deactivate visualization).

Training

Run:

python train_flow.py --config configs/train_ANN.yml
python train_flow.py --config configs/train_SNN.yml

to train an traditional artificial neural network (ANN, default: FireNet) or a spiking neural network (SNN, default: LIF-FireNet), respectively. In configs/, you can find the aforementioned configuration files and vary the training settings (e.g., model, number of input events, activate/deactivate visualization). For other models available, see models/model.py.

Note that we used a batch size of 8 in our experiments. Depending on your computational resources, you may need to lower this number.

During and after the training, information about your run can be visualized through MLflow.

Uninstalling pyenv

Once you finish using our code, you can uninstall pyenv from your system by:

  1. Removing the pyenv configuration lines from your ~/.bashrc.
  2. Removing its root directory. This will delete all Python versions that were installed under the $HOME/.pyenv/versions/ directory:
rm -rf $HOME/.pyenv/
Owner
TU Delft
TU Delft - MAVLab
TU Delft
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

20 Dec 16, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022