An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

Overview

GLOM - Pytorch (wip)

An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns) for emergent part-whole heirarchies from data.

Citations

@misc{hinton2021represent,
    title   = {How to represent part-whole hierarchies in a neural network}, 
    author  = {Geoffrey Hinton},
    year    = {2021},
    eprint  = {2102.12627},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • help

    help

    Hello, when I tried to reproduce your model, I got this error. I'm not sure how to correct it, can y help me?

    Traceback (most recent call last): File "main.py", line 172, in outputs = custom_model(images,iters = 12) File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/root/class/glom_pytorch/glom_pytorch.py", line 109, in forward consensus = self.attention(levels) File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in call_impl result = self.forward(*input, **kwargs) File "/root/class/glom_pytorch/glom_pytorch.py", line 49, in forward sim.masked_fill(self_mask, TOKEN_ATTEND_SELF_VALUE) RuntimeError: Expected object of scalar type Bool but got scalar type Float for argument #2 'mask' in call to th_masked_fill_bool

    opened by DDxk369 1
  • Levels token

    Levels token

    Hello, thank you for your good work. I was trying to implement the idea you shared in this todo:

    https://github.com/lucidrains/glom-pytorch/projects/1#card-56284841

    The text reads: allow each level to be represented by a list of tokens, updated with attention, simliar to https://github.com/lucidrains/transformer-in-transformer

    I was going to implement it with a simple token at each level, but I was wondering if you had any suggestion on how to implement it correctly. Thank you.

    opened by zenos4mbu 0
  • Implementing geometric mean for consensus opinion/levels_mean

    Implementing geometric mean for consensus opinion/levels_mean

    Hi, I'm trying to implement the consensus opinion (levels_mean) as a geometric mean of the top-down predictions, bottom-up predictions, attention-weighted average of same-level embeddings, and embeddings of the previous time step as described by the original paper. Any ideas on how the weights should be set?

    At first I thought this could be a learnable parameter, but section 9.1 reads

    For interpreting a static image with no temporal context, the weights used for this weighted geometric mean need to change during the iterations that occur after a new fixation.

    which leads me to believe that these might need to be outputted on the fly a la vanilla attention as opposed to being learned. Maybe an MLP that takes in the four source embeddings and outputs four scalars as weights?

    opened by ryan-caesar-ramos 0
  • Classification

    Classification

    Hi @lucidrains ! Do you have any idea/insight on how to supervise classification (let's say, for example, MNIST digits classification) after having trained GLOM in an unsupervised way as a denoising autoencoder? In the paper that seems to be the final goal. However, it's not clear to me which columns and/or levels should be used for the classification. Also, since GLOM it's dealing with patches, how can single black patches vote towards a certain digit?

    In other words, after training GLOM as a denoising autoencoder on MNIST, what we have is:

    • p X p columns, where p is the number of patches per dimension (e.g. 7X7=49 patches)
    • 6 levels for each column, where the top-most levels should in theory represent higher-level entities, so it seems natural to search for the digit information in these layers
    • 6*2=12 iterations, to allow for information to be passed by both top-down and bottom-up networks

    Just by applying dimensionality reduction on the top-most level at different iterations does not seem enough to make the digit clusters emerge. So I'm wondering if you (or anybody else) have some insights on this. Cheers!

    opened by A7ocin 1
  • Bug in forward?

    Bug in forward?

    Hello, thank you for making this code available! I think there could be a potential bug in the first line of the forward function:

    b, h, w, _, device = *img.shape, img.device

    but the input image shape is of kind b c h w, so it could be fixed by replacing it with

    b, _, h, w, device = *img.shape, img.device

    Am I wrong?

    opened by A7ocin 9
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search

generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search This repository contains single-threaded TreeMesh code. I'm Hua Tong, a senior stu

Hua Tong 18 Sep 21, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022