Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

Overview

SegPC-2021

This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by Deepanshu Pandey, Pradyumna Gupta, Sumit Bhattacharya, Aman Sinha, Rohit Agarwal.

About the Challenge

Website link: https://segpc-2021.grand-challenge.org/SegPC-2021/

Overview: In recent years, with the advancement of Deep Learning, there has been tremendous efforts in the application of image processing to build AI based models for cancer diagnosis. This challenge is also one such effort. It deals with the segmentation of plasma cell cancer, namely, Multiple Myeloma (MM), which is a type of blood cancer. We are provided with the stained color normalization imag of the cells.

Image distribution: The cells may have different structures because:

  • There is a varying amount of nucleus and cytoplasm from one cell to another.
  • The cells may appear in clusters or as isolated single cells.
  • The cells appearing in clusters may have three cases -
    • Cytoplasm of two cells touch each other,
    • The cytoplasm of one cell and nucleus of another touch each other,
    • nucleus of cells touch each other. Since the cytoplasm and nucleus have different colors, the segmentation of cells may pose challenges.
  • There may be multiple cells touching each other in the cluster.
  • There may be unstained cells, say a red blood cell underneath the cell of interest, changing its color and shade.
  • The cytoplasm of a cell may be close to the background of the whole image, making it difficult to identify the boundary of the cell and segment it.

Getting Started

We recommend using Python 3.7 for running the scripts in this repository. The necessary packages can be installed using requirements.txt in the respective folders. Since all of our work has been done on Google Colaboratory, the requirements.txt may have more packages/modules than is actually required and it might take quite long to install everything. Hence,for such a case, the folders of both the models also contain an essential-requirements.txt file which contains some essential packages that need to installed beforehand, while the other fundamental packages can be installed later as their need shows up as an error when running the given training and inference scripts.

To clone this repository:

$ git clone https://github.com/dsciitism/SegPC-2021

To run this repository, following the given steps using the sections mentioned in the subsequent sections:

  1. Prepare the data in COCO format
  2. Run the training script for Cascade Mask RCNN / DetectoRS
  3. Run the inference script for Cascade Mask RCNN / DetectoRS
  4. Run the ensemble script

Data Preparation

Note : This step is not required for inference.

All the models present in the paper require data in COCO format to train. Hence , to train the models the images and masks need to be resized and a json file in COCO format is required. The dataset_preparation.py script in the utils folder can be used to perform these tasks. The following flags need to be used for running the dataset_preparation.py script:

usage: dataset_preparation.py [-h] --img_root IMG_ROOT --mask_root MASK_ROOT --dest_root DEST_ROOT

arguments:
  -h, --help            show this help message and exit
  --img_root IMG_ROOT   path to the folder where the images are saved
  --mask_root MASK_ROOT
                        path to the folder where gt instances are saved
  --dest_root DEST_ROOT
                        path to the folder where the COCO format json file and resized masks and images will be saved

Cascade Mask RCNN

For installation of required packages:

$ cat Cascade_Mask_RCNN_X152/requirements.txt | xargs -n 1 pip3 install

Train

The following flags need to be used to run CMRCNN_X152_train.py:

usage: CMRCNN_X152_train.py [-h] --backbone {Original,Effb5,Transformer_Effb5} --train_data_root TRAIN_DATA_ROOT 
--training_json_path TRAINING_JSON_PATH --val_data_root VAL_DATA_ROOT --validation_json_path VALIDATION_JSON_PATH 
--work_dir WORK_DIR [--iterations ITERATIONS] [--batch_size BATCH_SIZE]

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --train_data_root TRAIN_DATA_ROOT
                        path to training data root folder
  --training_json_path TRAINING_JSON_PATH
                        path to the training json file in COCO format
  --val_data_root VAL_DATA_ROOT
                        path to validation data root folder
  --validation_json_path VALIDATION_JSON_PATH
                        path to validation json file in COCO format
  --work_dir WORK_DIR   path to the folder where models and logs will be saved
  --iterations ITERATIONS
  --batch_size BATCH_SIZE

Inference

The following flags need to be used while running CMRCNN_X152_inference.py:

usage: CMRCNN_X152_inference.py [-h] --backbone {Original,Effb5,Transformer_Effb5} 
--saved_model_path SAVED_MODEL_PATH --input_images_folder INPUT_IMAGES_FOLDER --save_path SAVE_PATH

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --saved_model_path SAVED_MODEL_PATH
                        path to the saved model which will be loaded
  --input_images_folder INPUT_IMAGES_FOLDER
                        path to the folder where images to inference on are
                        kept
  --save_path SAVE_PATH
                        path to the folder where the generated masks will be
                        saved

DetectoRS

Preparation script should be run with the following command before running any other file in the DetectoRS folder :

$ bash mmdetection_preparation.sh

For installation of required packages:

$ cat DetectoRS/requirements.txt | xargs -n 1 pip3 install

Train

The following flags need to be used while running DetectoRS_train.py:

usage: DetectoRS_train.py [-h] --backbone {Original,Effb5,Transformer_Effb5} --train_data_root TRAIN_DATA_ROOT 
--training_json_path TRAINING_JSON_PATH [--train_img_prefix TRAIN_IMG_PREFIX] [--train_seg_prefix TRAIN_SEG_PREFIX] 
--val_data_root VAL_DATA_ROOT --validation_json_path VALIDATION_JSON_PATH [--val_img_prefix VAL_IMG_PREFIX] 
[--val_seg_prefix VAL_SEG_PREFIX] --work_dir WORK_DIR [--epochs EPOCHS] [--batch_size BATCH_SIZE]

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --train_data_root TRAIN_DATA_ROOT
                        path to training data root folder
  --training_json_path TRAINING_JSON_PATH
                        path to the training json file in COCO format
  --train_img_prefix TRAIN_IMG_PREFIX
                        prefix path ,if any, to be added to the train_data_root path to access the input images
  --train_seg_prefix TRAIN_SEG_PREFIX
                        prefix path ,if any, to be added to the train_data_root path to access the semantic masks
  --val_data_root VAL_DATA_ROOT
                        path to validation data root folder
  --validation_json_path VALIDATION_JSON_PATH
                        path to validation json file in COCO format
  --val_img_prefix VAL_IMG_PREFIX
                        prefix path ,if any, to be added to the val_data_root path to access the input images
  --val_seg_prefix VAL_SEG_PREFIX
                        prefix path ,if any, to be added to the val_data_root path to access the semantic masks
  --work_dir WORK_DIR   path to the folder where models and logs will be saved
  --epochs EPOCHS
  --batch_size BATCH_SIZE

Note: DetectoRS requires semantic masks along with instance masks during training , hence the arguments - train_seg_prefix and val_seg_prefix

Inference

The following flags need to be used while running DetectoRS_inference.py:

usage: DetectoRS_inference.py [-h] --backbone {Original,Effb5,Transformer_Effb5} 
--saved_model_path SAVED_MODEL_PATH --input_images_folder INPUT_IMAGES_FOLDER --save_path SAVE_PATH

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --saved_model_path SAVED_MODEL_PATH
                        path to the saved model which will be loaded
  --input_images_folder INPUT_IMAGES_FOLDER
                        path to the folder where images to inference on are kept
  --save_path SAVE_PATH
                        path to the folder where the generated masks will be saved

Ensemble

Apart from the individual models, the paper also presents the scores of ensemble of any three models. The ensemble.py script in the utils folder can be used for making ensemble of the outputs of three models , using the following flags :

usage: ensemble.py [-h] --model1_predictions MODEL1_PREDICTIONS --model2_predictions MODEL2_PREDICTIONS --model3_predictions MODEL3_PREDICTIONS --final_predictions FINAL_PREDICTIONS

arguments:
  -h, --help            show this help message and exit
  --model1_predictions MODEL1_PREDICTIONS
                        path to the predictions of first model
  --model2_predictions MODEL2_PREDICTIONS
                        path to the predictions of second model
  --model3_predictions MODEL3_PREDICTIONS
                        path to the predictions of third model
  --final_predictions FINAL_PREDICTIONS
                        path where the ensembled outputs should be saved

Results and Models

Method Backbone mIoU Download
Cascade Mask R-CNN Original(ResNet) 0.9179 model
DetectoRS Original(ResNet) 0.9219 model
Cascade Mask R-CNN EfficientNet-b5 0.8793 model
DetectoRS EfficientNet-b5 0.9038 model
Cascade Mask R-CNN EfficientNet-b5+ViT 0.9281 model
DetectoRS EfficientNet-b5+ViT 0.9273 model
Owner
Datascience IIT-ISM
Datascience IIT-ISM
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022