A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

Overview

idn-solver

Paper | Project Page

This repository contains the code release of our ICCV 2021 paper:

A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

Wang Zhao*, Shaohui Liu*, Yi Wei, Hengkai Guo, Yong-Jin Liu

Installation

We recommend to use conda to setup a specified environment. Run

conda env create -f environment.yml

Test on a sequence

First download the pretrained model from here and put it under ./pretrain/ folder.

Prepare the sequence data with color images, camera poses (4x4 cam2world transformation) and intrinsics. The sequence data structure should be like:

sequence_name
  | color
      | 00000.jpg
  | pose
      | 00000.txt
  | K.txt

Run the following command to get the outputs:

python infer_folder.py --seq_dir /path/to/the/sequence/data --output_dir /path/to/save/outputs --config ./configs/test_folder.yaml

Tune the "reference gap" parameter to make sure there are sufficient overlaps and camera translations within an image pair. For ScanNet-like sequence, we recommend to use reference_gap of 20.

Test on ScanNet

Prepare ScanNet test split data

Download the ScanNet test split data from the official site and pre-process the data using:

python ./data/preprocess.py --data_dir /path/to/scannet/test/split/ --output_dir /path/to/save/pre-processed/scannet/test/data

This includes 1. resize the color images to 480x640 resolution 2. sample the data with interval of 20

Run evaluation

python eval_scannet.py --data_dir /path/to/processed/scannet/test/split/ --config ./configs/test_scannet.yaml

Train

Prepare ScanNet training data

We use the pre-processed ScanNet data from NAS, you could download the data using this link. The data structure is like:

scannet
  | scannet_nas
    | train
      | scene0000_00
          | color
            | 0000.jpg
          | pose
            | 0000.txt
          | depth
            | 0000.npy
          | intrinsic
          | normal
            | 0000_normal.npy
    | val
  | scans_test_sample (preprocessed ScanNet test split)

Run training

Modify the "dataset_path" variable with yours in the config yaml.

The network is trained with a two-stage strategy. The whole training process takes ~6 days with 4 Nvidia V100 GPUs.

python train.py ./configs/scannet_stage1.yaml
python train.py ./configs/scannet_stage2.yaml

Citation

If you find our work useful in your research, please consider citing:

@InProceedings{Zhao_2021_ICCV,
    author    = {Zhao, Wang and Liu, Shaohui and Wei, Yi and Guo, Hengkai and Liu, Yong-Jin},
    title     = {A Confidence-Based Iterative Solver of Depths and Surface Normals for Deep Multi-View Stereo},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {6168-6177}
}

Acknowledgement

This project heavily relies codes from NAS and we thank the authors for releasing their code.

We also thank Xiaoxiao Long for kindly helping with ScanNet evaluations.

Owner
zhaowang
Hungry and Humble
zhaowang
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022
An efficient framework for reinforcement learning.

rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1

16 Nov 30, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022