A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

Overview

idn-solver

Paper | Project Page

This repository contains the code release of our ICCV 2021 paper:

A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

Wang Zhao*, Shaohui Liu*, Yi Wei, Hengkai Guo, Yong-Jin Liu

Installation

We recommend to use conda to setup a specified environment. Run

conda env create -f environment.yml

Test on a sequence

First download the pretrained model from here and put it under ./pretrain/ folder.

Prepare the sequence data with color images, camera poses (4x4 cam2world transformation) and intrinsics. The sequence data structure should be like:

sequence_name
  | color
      | 00000.jpg
  | pose
      | 00000.txt
  | K.txt

Run the following command to get the outputs:

python infer_folder.py --seq_dir /path/to/the/sequence/data --output_dir /path/to/save/outputs --config ./configs/test_folder.yaml

Tune the "reference gap" parameter to make sure there are sufficient overlaps and camera translations within an image pair. For ScanNet-like sequence, we recommend to use reference_gap of 20.

Test on ScanNet

Prepare ScanNet test split data

Download the ScanNet test split data from the official site and pre-process the data using:

python ./data/preprocess.py --data_dir /path/to/scannet/test/split/ --output_dir /path/to/save/pre-processed/scannet/test/data

This includes 1. resize the color images to 480x640 resolution 2. sample the data with interval of 20

Run evaluation

python eval_scannet.py --data_dir /path/to/processed/scannet/test/split/ --config ./configs/test_scannet.yaml

Train

Prepare ScanNet training data

We use the pre-processed ScanNet data from NAS, you could download the data using this link. The data structure is like:

scannet
  | scannet_nas
    | train
      | scene0000_00
          | color
            | 0000.jpg
          | pose
            | 0000.txt
          | depth
            | 0000.npy
          | intrinsic
          | normal
            | 0000_normal.npy
    | val
  | scans_test_sample (preprocessed ScanNet test split)

Run training

Modify the "dataset_path" variable with yours in the config yaml.

The network is trained with a two-stage strategy. The whole training process takes ~6 days with 4 Nvidia V100 GPUs.

python train.py ./configs/scannet_stage1.yaml
python train.py ./configs/scannet_stage2.yaml

Citation

If you find our work useful in your research, please consider citing:

@InProceedings{Zhao_2021_ICCV,
    author    = {Zhao, Wang and Liu, Shaohui and Wei, Yi and Guo, Hengkai and Liu, Yong-Jin},
    title     = {A Confidence-Based Iterative Solver of Depths and Surface Normals for Deep Multi-View Stereo},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {6168-6177}
}

Acknowledgement

This project heavily relies codes from NAS and we thank the authors for releasing their code.

We also thank Xiaoxiao Long for kindly helping with ScanNet evaluations.

Owner
zhaowang
Hungry and Humble
zhaowang
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

0 Mar 01, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022