Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Overview

Contrast and Mix (CoMix)

The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing part of Advances in Neural Information Processing Systems (NeurIPS) 2021.

Aadarsh Sahoo1, Rutav Shah1, Rameswar Panda2, Kate Saenko2,3, Abir Das1

1 IIT Kharagpur, 2 MIT-IBM Watson AI Lab, 3 Boston University

[Paper] [Project Page]

 

Fig. Temporal Contrastive Learning with Background Mixing and Target Pseudo-labels. Temporal contrastive loss (left) contrasts a single temporally augmented positive (same video, different speed) per anchor against rest of the videos in a mini-batch as negatives. Incorporating background mixing (middle) provides additional positives per anchor possessing same action semantics with a different background alleviating background shift across domains. Incorporating target pseudo-labels (right) additionally enhances the discriminabilty by contrasting the target videos with the same pseudo-label as positives against rest of the videos as negatives.

 

Preparing the Environment

Conda

Please use the comix_environment.yml file to create the conda environment comix as:

conda env create -f comix_environment.yml

Pip

Please use the requirements.txt file to install all the required dependencies as:

pip install -r requirements.txt

Data Directory Structure

All the datasets should be stored in the folder ./data following the convention ./data/ and it must be passed as an argument to base_dir=./data/ .

UCF - HMDB

For ucf_hmdb dataset with base_dir=./data/ucf_hmdb the structure would be as follows:

.
├── ...
├── data
│   ├── ucf_hmdb
│   │   ├── ucf_videos
|   |   |   ├── 
   
    
|   |   |   |   ├── 
    
     
|   |   |   |   ├── 
     
      
|   |   |   |   ├── ...
|   |   |   ├── 
      
       
|   |   |   ├── ...
│   │   ├── hmdb_videos
|   |   ├── ucf_BG
|   |   └── hmdb_BG
│   └──
└──

      
     
    
   
Jester

For Jester dataset with base_dir=./data/jester the structure would be as follows

.
├── ...
├── data
│   ├── jester
|   |   ├── jester_videos
|   |   |   ├── 
   
    
|   |   |   |   ├── 
    
     
|   |   |   |   ├── 
     
      
|   |   |   |   ├── ...
|   |   |   ├── 
      
       
|   |   |   ├── ...
|   |   ├── jester_BG
|   |   |   ├── 
       
         | | | | ├── 
        
          | | | ├── ... └── └── └── 
        
       
      
     
    
   
Epic-Kitchens

For Epic Kitchens dataset with base_dir=./data/epic_kitchens the structure would be as follows (we follow the same structure as in the original dataset) :

.
├── ...
├── data
│   ├── epic_kitchens
|   |   ├── epic_kitchens_videos
|   |   |   ├── train
|   |   |   |   ├── D1
|   |   |   |   |   ├── 
   
    
|   |   |   |   |   |   ├── 
    
     
|   |   |   |   |   |   ├── 
     
      
|   |   |   |   |   |   ├── ...
|   |   |   |   |   ├── 
      
       
|   |   |   |   |   ├── ...
|   |   |   |   ├── D2
|   |   |   |   └── D3
|   |   |   └── test
└── └── └── epic_kitchens_BG

      
     
    
   

For using datasets stored in some other directories, please pass the parameter base_dir accordingly.

Background Extraction using Temporal Median Filtering

Please refer to the folder ./background_extraction for the codes to extract backgrounds using temporal median filtering.

Data

All the required split files are provided inside the directory ./video_splits.

The official download links for the datasets used for this paper are: [UCF-101] [HMDB-51] [Jester] [Epic Kitchens]

Training CoMix

Here are some of the sample and recomended commands to train CoMix for the transfer task of:

UCF -> HMDB from UCF-HMDB dataset:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --manual_seed 1 --dataset_name UCF-HMDB --src_dataset UCF --tgt_dataset HMDB --batch_size 8 --model_root ./checkpoints_ucf_hmdb --save_in_steps 500 --log_in_steps 50 --eval_in_steps 50 --pseudo_threshold 0.7 --warmstart_models True --num_iter_warmstart 4000 --num_iter_adapt 10000 --learning_rate 0.01 --learning_rate_ws 0.01 --lambda_bgm 0.1 --lambda_tpl 0.01 --base_dir ./data/ucf_hmdb

S -> T from Jester dataset:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --manual_seed 1 --dataset_name Jester --src_dataset S --tgt_dataset T --batch_size 8 --model_root ./checkpoints_jester --save_in_steps 500 --log_in_steps 50 --eval_in_steps 50 --pseudo_threshold 0.7 --warmstart_models True --num_iter_warmstart 4000 --num_iter_adapt 10000 --learning_rate 0.01 --learning_rate_ws 0.01 --lambda_bgm 0.1 --lambda_tpl 0.1 --base_dir ./data/jester

D1 -> D2 from Epic-Kitchens dataset:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --manual_seed 1 --dataset_name Epic-Kitchens --src_dataset D1 --tgt_dataset D2 --batch_size 8 --model_root ./checkpoints_epic_d1_d2 --save_in_steps 500 --log_in_steps 50 --eval_in_steps 50 --pseudo_threshold 0.7 --warmstart_models True --num_iter_warmstart 4000 --num_iter_adapt 10000 --learning_rate 0.01 --learning_rate_ws 0.01 --lambda_bgm 0.01 --lambda_tpl 0.01 --base_dir ./data/epic_kitchens

For detailed description regarding the arguments, use:

python main.py --help

Citing CoMix

If you use codes in this repository, consider citing CoMix. Thanks!

@article{sahoo2021contrast,
  title={Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing},
  author={Sahoo, Aadarsh and Shah, Rutav and Panda, Rameswar and Saenko, Kate and Das, Abir},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Computer Vision and Intelligence Research (CVIR)
The Computer Vision and Intelligence Research (CVIR) group is part of the Department of Computer Science and Engineering at IIT Kharagpur.
Computer Vision and Intelligence Research (CVIR)
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023