EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

Related tags

Deep LearningEncT5
Overview

EncT5

(Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

About

  • Finetune T5 model for classification & regression by only using the encoder layers.
  • Implemented of Tokenizer and Model for EncT5.
  • Add BOS Token () for tokenizer, and use this token for classification & regression.
    • Need to resize embedding as vocab size is changed. (model.resize_token_embeddings())
  • BOS and EOS token will be automatically added as below.
    • single sequence: X
    • pair of sequences: A B

Requirements

Highly recommend to use the same version of transformers.

transformers==4.15.0
torch==1.8.1
sentencepiece==0.1.96
datasets==1.17.0
scikit-learn==0.24.2

How to Use

from enc_t5 import EncT5ForSequenceClassification, EncT5Tokenizer

model = EncT5ForSequenceClassification.from_pretrained("t5-base")
tokenizer = EncT5Tokenizer.from_pretrained("t5-base")

# Resize embedding size as we added bos token
if model.config.vocab_size < len(tokenizer.get_vocab()):
    model.resize_token_embeddings(len(tokenizer.get_vocab()))

Finetune on GLUE

Setup

  • Use T5 1.1 base for finetuning.
  • Evaluate on TPU. See run_glue_tpu.sh for more details.
  • Use AdamW optimizer instead of Adafactor.
  • Check best checkpoint on every epoch by using EarlyStoppingCallback.

Results

Metric Result (Paper) Result (Implementation)
CoLA Matthew 53.1 52.4
SST-2 Acc 94.0 94.5
MRPC F1/Acc 91.5/88.3 91.7/88.0
STS-B PCC/SCC 80.5/79.3 88.0/88.3
QQP F1/Acc 72.9/89.8 88.4/91.3
MNLI Mis/Matched 88.0/86.7 87.5/88.1
QNLI Acc 93.3 93.2
RTE Acc 67.8 69.7
You might also like...
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

 Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Fine-tuning StyleGAN2 for Cartoon Face Generation
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Comments
  • Enable tokenizer to be loaded by sentence-transformer

    Enable tokenizer to be loaded by sentence-transformer

    🚀 Feature Request

    Integration into sentence-transformer library.

    📎 Additional context

    I tried to load this tokenizer with sentence-transformer library but it failed. AutoTokenizer couldn't load this tokenizer. So, I simply added code to override save_pretrained and its dependencies so that this tokenizer is saved as T5Tokenizer, its super class.

            def save_pretrained(
            self,
            save_directory,
            legacy_format: Optional[bool] = None,
            filename_prefix: Optional[str] = None,
            push_to_hub: bool = False,
            **kwargs,
        ):
            if os.path.isfile(save_directory):
                logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
                return
    
            if push_to_hub:
                commit_message = kwargs.pop("commit_message", None)
                repo = self._create_or_get_repo(save_directory, **kwargs)
    
            os.makedirs(save_directory, exist_ok=True)
    
            special_tokens_map_file = os.path.join(
                save_directory, (filename_prefix + "-" if filename_prefix else "") + SPECIAL_TOKENS_MAP_FILE
            )
            tokenizer_config_file = os.path.join(
                save_directory, (filename_prefix + "-" if filename_prefix else "") + TOKENIZER_CONFIG_FILE
            )
    
            tokenizer_config = copy.deepcopy(self.init_kwargs)
            if len(self.init_inputs) > 0:
                tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs)
            for file_id in self.vocab_files_names.keys():
                tokenizer_config.pop(file_id, None)
    
            # Sanitize AddedTokens
            def convert_added_tokens(obj: Union[AddedToken, Any], add_type_field=True):
                if isinstance(obj, AddedToken):
                    out = obj.__getstate__()
                    if add_type_field:
                        out["__type"] = "AddedToken"
                    return out
                elif isinstance(obj, (list, tuple)):
                    return list(convert_added_tokens(o, add_type_field=add_type_field) for o in obj)
                elif isinstance(obj, dict):
                    return {k: convert_added_tokens(v, add_type_field=add_type_field) for k, v in obj.items()}
                return obj
    
            # add_type_field=True to allow dicts in the kwargs / differentiate from AddedToken serialization
            tokenizer_config = convert_added_tokens(tokenizer_config, add_type_field=True)
    
            # Add tokenizer class to the tokenizer config to be able to reload it with from_pretrained
            ############################################################################
            tokenizer_class = self.__class__.__base__.__name__
            ############################################################################
            # Remove the Fast at the end unless we have a special `PreTrainedTokenizerFast`
            if tokenizer_class.endswith("Fast") and tokenizer_class != "PreTrainedTokenizerFast":
                tokenizer_class = tokenizer_class[:-4]
            tokenizer_config["tokenizer_class"] = tokenizer_class
            if getattr(self, "_auto_map", None) is not None:
                tokenizer_config["auto_map"] = self._auto_map
            if getattr(self, "_processor_class", None) is not None:
                tokenizer_config["processor_class"] = self._processor_class
    
            # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
            # loaded from the Hub.
            if self._auto_class is not None:
                custom_object_save(self, save_directory, config=tokenizer_config)
    
            with open(tokenizer_config_file, "w", encoding="utf-8") as f:
                f.write(json.dumps(tokenizer_config, ensure_ascii=False))
            logger.info(f"tokenizer config file saved in {tokenizer_config_file}")
    
            # Sanitize AddedTokens in special_tokens_map
            write_dict = convert_added_tokens(self.special_tokens_map_extended, add_type_field=False)
            with open(special_tokens_map_file, "w", encoding="utf-8") as f:
                f.write(json.dumps(write_dict, ensure_ascii=False))
            logger.info(f"Special tokens file saved in {special_tokens_map_file}")
    
            file_names = (tokenizer_config_file, special_tokens_map_file)
    
            save_files = self._save_pretrained(
                save_directory=save_directory,
                file_names=file_names,
                legacy_format=legacy_format,
                filename_prefix=filename_prefix,
            )
    
            if push_to_hub:
                url = self._push_to_hub(repo, commit_message=commit_message)
                logger.info(f"Tokenizer pushed to the hub in this commit: {url}")
    
            return save_files
    
    enhancement 
    opened by kwonmha 0
Releases(v1.0.0)
  • v1.0.0(Jan 22, 2022)

    What’s Changed

    :rocket: Features

    • Add GLUE Trainer (#2) @monologg
    • Add Template & EncT5 model and tokenizer (#1) @monologg

    :pencil: Documentation

    • Add readme & script (#3) @monologg
    Source code(tar.gz)
    Source code(zip)
Owner
Jangwon Park
Jangwon Park
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
PyTorch reimplementation of Diffusion Models

PyTorch pretrained Diffusion Models A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author'

Patrick Esser 265 Jan 01, 2023
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022