🚀 Feature Request
Integration into sentence-transformer
library.
📎 Additional context
I tried to load this tokenizer with sentence-transformer
library but it failed.
AutoTokenizer
couldn't load this tokenizer.
So, I simply added code to override save_pretrained
and its dependencies so that this tokenizer is saved as T5Tokenizer
, its super class.
def save_pretrained(
self,
save_directory,
legacy_format: Optional[bool] = None,
filename_prefix: Optional[str] = None,
push_to_hub: bool = False,
**kwargs,
):
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
repo = self._create_or_get_repo(save_directory, **kwargs)
os.makedirs(save_directory, exist_ok=True)
special_tokens_map_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + SPECIAL_TOKENS_MAP_FILE
)
tokenizer_config_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + TOKENIZER_CONFIG_FILE
)
tokenizer_config = copy.deepcopy(self.init_kwargs)
if len(self.init_inputs) > 0:
tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs)
for file_id in self.vocab_files_names.keys():
tokenizer_config.pop(file_id, None)
# Sanitize AddedTokens
def convert_added_tokens(obj: Union[AddedToken, Any], add_type_field=True):
if isinstance(obj, AddedToken):
out = obj.__getstate__()
if add_type_field:
out["__type"] = "AddedToken"
return out
elif isinstance(obj, (list, tuple)):
return list(convert_added_tokens(o, add_type_field=add_type_field) for o in obj)
elif isinstance(obj, dict):
return {k: convert_added_tokens(v, add_type_field=add_type_field) for k, v in obj.items()}
return obj
# add_type_field=True to allow dicts in the kwargs / differentiate from AddedToken serialization
tokenizer_config = convert_added_tokens(tokenizer_config, add_type_field=True)
# Add tokenizer class to the tokenizer config to be able to reload it with from_pretrained
############################################################################
tokenizer_class = self.__class__.__base__.__name__
############################################################################
# Remove the Fast at the end unless we have a special `PreTrainedTokenizerFast`
if tokenizer_class.endswith("Fast") and tokenizer_class != "PreTrainedTokenizerFast":
tokenizer_class = tokenizer_class[:-4]
tokenizer_config["tokenizer_class"] = tokenizer_class
if getattr(self, "_auto_map", None) is not None:
tokenizer_config["auto_map"] = self._auto_map
if getattr(self, "_processor_class", None) is not None:
tokenizer_config["processor_class"] = self._processor_class
# If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
# loaded from the Hub.
if self._auto_class is not None:
custom_object_save(self, save_directory, config=tokenizer_config)
with open(tokenizer_config_file, "w", encoding="utf-8") as f:
f.write(json.dumps(tokenizer_config, ensure_ascii=False))
logger.info(f"tokenizer config file saved in {tokenizer_config_file}")
# Sanitize AddedTokens in special_tokens_map
write_dict = convert_added_tokens(self.special_tokens_map_extended, add_type_field=False)
with open(special_tokens_map_file, "w", encoding="utf-8") as f:
f.write(json.dumps(write_dict, ensure_ascii=False))
logger.info(f"Special tokens file saved in {special_tokens_map_file}")
file_names = (tokenizer_config_file, special_tokens_map_file)
save_files = self._save_pretrained(
save_directory=save_directory,
file_names=file_names,
legacy_format=legacy_format,
filename_prefix=filename_prefix,
)
if push_to_hub:
url = self._push_to_hub(repo, commit_message=commit_message)
logger.info(f"Tokenizer pushed to the hub in this commit: {url}")
return save_files
enhancement