Code for MSc Quantitative Finance Dissertation

Overview

MSc Dissertation Code ReadMe

Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks

Curtis Nybo

MSc Quantitative Finance Dissertation 2020

This repository contains the code developed for my MSc Dissertation.

The Data

The data is retrieved from the Kenneth R. French data library (1). The dataset contains all U.S stocks, sorted into five sectors by SIC code. The datasets I have used in this study are provided in the 'Data' folder. The folder contains the original dataset and a summary of the dataset, and each specific has been extracted to its own file.

The Code

The thesis paper uses six Jupyter notebooks that were developed for this project. Three GARCH specifications and three ANN architectures are considered with one notebook for each.

The ANN notebooks are comprised of one notebook per architecture (5,1,1), (5,12,1), and (5,50,1).

The GARCH notebooks are comprised of one notebook for the GARCH(p,q), GARCH(1,1), and EGARCH(p,q) model.

How to use

Each notebook is commented throughout to guide reproducibility. The data in this repository needs to be placed in a local directory, then the code needs to be changed to point to that directory. The script should then read in the data and follow the same computations in this study.

To replicate the conda environment used to develop and run the code, see the tensorflowML.yml file in the repository. This contains all Python packages used and their corresponding versions. This yml file can be directly imported into Conda to reproduce the environment used in this study.

References

Many thanks to those who provided resources and prior work to leverage in my notebooks and scripts. More specific referencing is completed in each notebook.

(1) Data Library - Kenneth R. French - https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html - 2020

(2) Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras - Jason Brownlee, PhD - https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/ - 2016

(3) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition - Aurélien Géron - https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ - 2019

(4) TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems - https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf - 2015

(5) Kevin Sheppard, Stanislav Khrapov, Gábor Lipták, mikedeltalima, Rob Capellini, esvhd, … jbrockmendel. (2019, November 22). bashtage/arch: Release 4.13 (Version 4.13). Zenodo. http://doi.org/10.5281/zenodo.3551028

(6) Auquan - Time Series Analysis for Financial Data VI— GARCH model and predicting SPX returns - https://medium.com/auquan/time-series-analysis-for-finance-arch-garch-models-822f87f1d755 - 2017

(7) Sarit Maitra - Forecasting using GARCH Processes & Monte-Carlo Simulations: statistical analysis & mathematical model using Python - https://towardsdatascience.com/garch-processes-monte-carlo-simulations-for-analytical-forecast-27edf77b2787 - 2019

A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
Benchmarks for Object Detection in Aerial Images

Benchmarks for Object Detection in Aerial Images

Jian Ding 691 Dec 30, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022