Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Overview

Video Corpus Moment Retrieval with Contrastive Learning

PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning" (SIGIR 2021, long paper): SIGIR version, ArXiv version.

model_overview

The codes are modified from TVRetrieval.

Prerequisites

  • python 3.x with pytorch (1.7.0), torchvision, transformers, tensorboard, tqdm, h5py, easydict
  • cuda, cudnn

If you have Anaconda installed, the conda environment of ReLoCLNet can be built as follows (take python 3.7 as an example):

conda create --name reloclnet python=3.7
conda activate reloclnet
conda install -c anaconda cudatoolkit cudnn  # ignore this if you already have cuda installed
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
conda install -c anaconda h5py=2.9.0
conda install -c conda-forge transformers tensorboard tqdm easydict

The conda environment of TVRetrieval also works.

Getting started

  1. Clone this repository
$ git clone [email protected]:IsaacChanghau/ReLoCLNet.git
$ cd ReLoCLNet
  1. Download features

For the features of TVR dataset, please download tvr_feature_release.tar.gz (link is copied from TVRetrieval#prerequisites) and extract it to the data directory:

$ tar -xf path/to/tvr_feature_release.tar.gz -C data

This link may be useful for you to directly download Google Drive files using wget. Please refer TVRetrieval#prerequisites for more details about how the features are extracted if you are interested.

  1. Add project root to PYTHONPATH (Note that you need to do this each time you start a new session.)
$ source setup.sh

Training and Inference

TVR dataset

# train, refer `method_tvr/scripts/train.sh` and `method_tvr/config.py` more details about hyper-parameters
$ bash method_tvr/scripts/train.sh tvr video_sub_tef resnet_i3d --exp_id reloclnet
# inference
# the model directory placed in method_tvr/results/tvr-video_sub_tef-reloclnet-*
# change the MODEL_DIR_NAME as tvr-video_sub_tef-reloclnet-*
# SPLIT_NAME: [val | test]
$ bash method_tvr/scripts/inference.sh MODEL_DIR_NAME SPLIT_NAME

For more details about evaluation and submission, please refer TVRetrieval#training-and-inference.

Citation

If you feel this project helpful to your research, please cite our work.

@inproceedings{zhang2021video,
	author = {Zhang, Hao and Sun, Aixin and Jing, Wei and Nan, Guoshun and Zhen, Liangli and Zhou, Joey Tianyi and Goh, Rick Siow Mong},
	title = {Video Corpus Moment Retrieval with Contrastive Learning},
	year = {2021},
	isbn = {9781450380379},
	publisher = {Association for Computing Machinery},
	address = {New York, NY, USA},
	url = {https://doi.org/10.1145/3404835.3462874},
	doi = {10.1145/3404835.3462874},
	booktitle = {Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval},
	pages = {685–695},
	numpages = {11},
	location = {Virtual Event, Canada},
	series = {SIGIR '21}
}

TODO

  • Upload codes for ActivityNet Captions dataset
Owner
ZHANG HAO
Research engineer at A*STAR and Ph.D. (CS) candidates at NTU
ZHANG HAO
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022