UniFormer - official implementation of UniFormer

Overview

UniFormer

This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It currently includes code and models for the following tasks:

Updates

01/13/2022

[Initial commits]:

  1. Pretrained models on ImageNet-1K, Kinetics-400, Kinetics-600, Something-Something V1&V2

  2. The supported code and models for image classification and video classification are provided.

Introduction

UniFormer (Unified transFormer) is introduce in arxiv, which effectively unifies 3D convolution and spatiotemporal self-attention in a concise transformer format. We adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation.

UniFormer achieves strong performance on video classification. With only ImageNet-1K pretraining, our UniFormer achieves 82.9%/84.8% top-1 accuracy on Kinetics-400/Kinetics-600, while requiring 10x fewer GFLOPs than other comparable methods (e.g., 16.7x fewer GFLOPs than ViViT with JFT-300M pre-training). For Something-Something V1 and V2, our UniFormer achieves 60.9% and 71.2% top-1 accuracy respectively, which are new state-of-the-art performances.

teaser

Main results on ImageNet-1K

Please see image_classification for more details.

More models with large resolution and token labeling will be released soon.

Model Pretrain Resolution Top-1 #Param. FLOPs
UniFormer-S ImageNet-1K 224x224 82.9 22M 3.6G
UniFormer-S† ImageNet-1K 224x224 83.4 24M 4.2G
UniFormer-B ImageNet-1K 224x224 83.9 50M 8.3G

Main results on Kinetics-400

Please see video_classification for more details.

Model Pretrain #Frame Sampling Method FLOPs K400 Top-1 K600 Top-1
UniFormer-S ImageNet-1K 16x1x4 16x4 167G 80.8 82.8
UniFormer-S ImageNet-1K 16x1x4 16x8 167G 80.8 82.7
UniFormer-S ImageNet-1K 32x1x4 32x4 438G 82.0 -
UniFormer-B ImageNet-1K 16x1x4 16x4 387G 82.0 84.0
UniFormer-B ImageNet-1K 16x1x4 16x8 387G 81.7 83.4
UniFormer-B ImageNet-1K 32x1x4 32x4 1036G 82.9 84.5*

* Since Kinetics-600 is too large to train (>1 month in single node with 8 A100 GPUs), we provide model trained in multi node (around 2 weeks with 32 V100 GPUs), but the result is lower due to the lack of tuning hyperparameters.

Main results on Something-Something

Please see video_classification for more details.

Model Pretrain #Frame FLOPs SSV1 Top-1 SSV2 Top-1
UniFormer-S K400 16x3x1 125G 57.2 67.7
UniFormer-S K600 16x3x1 125G 57.6 69.4
UniFormer-S K400 32x3x1 329G 58.8 69.0
UniFormer-S K600 32x3x1 329G 59.9 70.4
UniFormer-B K400 16x3x1 290G 59.1 70.4
UniFormer-B K600 16x3x1 290G 58.8 70.2
UniFormer-B K400 32x3x1 777G 60.9 71.1
UniFormer-B K600 32x3x1 777G 61.0 71.2

Main results on downstream tasks

We have conducted extensive experiments on downstream tasks and achieved comparable results with SOTA models.

Code and models will be released in two weeks.

Cite Uniformer

If you find this repository useful, please use the following BibTeX entry for citation.

@misc{li2022uniformer,
      title={Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning}, 
      author={Kunchang Li and Yali Wang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao},
      year={2022},
      eprint={2201.04676},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

This project is released under the MIT license. Please see the LICENSE file for more information.

Contributors and Contact Information

UniFormer is maintained by Kunchang Li.

For help or issues using UniFormer, please submit a GitHub issue.

For other communications related to UniFormer, please contact Kunchang Li ([email protected]).

Owner
SenseTime X-Lab
Powered by X-Lab, SenseTime Research
SenseTime X-Lab
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
AirLoop: Lifelong Loop Closure Detection

AirLoop This repo contains the source code for paper: Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv prep

Chen Wang 53 Jan 03, 2023
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019