Pseudo-Visual Speech Denoising

Overview

Pseudo-Visual Speech Denoising

This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021.
Authors: Sindhu Hegde*, K R Prajwal*, Rudrabha Mukhopadhyay*, Vinay Namboodiri, C.V. Jawahar

PWC PWC

📝 Paper 📑 Project Page 🛠 Demo Video 🗃 Real-World Test Set
Paper Website Video Real-World Test Set (coming soon)


Features

  • Denoise any real-world audio/video and obtain the clean speech.
  • Works in unconstrained settings for any speaker in any language.
  • Inputs only audio but uses the benefits of lip movements by generating a synthetic visual stream.
  • Complete training code and inference codes available.

Prerequisites

  • Python 3.7.4 (Code has been tested with this version)
  • ffmpeg: sudo apt-get install ffmpeg
  • Install necessary packages using pip install -r requirements.txt
  • Face detection pre-trained model should be downloaded to face_detection/detection/sfd/s3fd.pth

Getting the weights

Model Description Link to the model
Denoising model Weights of the denoising model (needed for inference) Link
Lipsync student Weights of the student lipsync model to generate the visual stream for noisy audio inputs (needed for inference) Link
Wav2Lip teacher Weights of the teacher lipsync model (only needed if you want to train the network from scratch) Link

Denoising any audio/video using the pre-trained model (Inference)

You can denoise any noisy audio/video and obtain the clean speech of the target speaker using:

python inference.py --lipsync_student_model_path= --checkpoint_path= --input=

The result is saved (by default) in results/result.mp4. The result directory can be specified in arguments, similar to several other available options. The input file can be any audio file: *.wav, *.mp3 or even a video file, from which the code will automatically extract the audio and generate the clean speech. Note that the noise should not be human speech, as this work only tackles the denoising task, not speaker separation.

Generating only the lip-movements for any given noisy audio/video

The synthetic visual stream (lip-movements) can be generated for any noisy audio/video using:

cd lipsync
python inference.py --checkpoint_path= --audio=

The result is saved (by default) in results/result_voice.mp4. The result directory can be specified in arguments, similar to several other available options. The input file can be any audio file: *.wav, *.mp3 or even a video file, from which the code will automatically extract the audio and generate the visual stream.

Training

We illustrate the training process using the LRS3 and VGGSound dataset. Adapting for other datasets would involve small modifications to the code.

Preprocess the dataset

LRS3 train-val/pre-train dataset folder structure
data_root (we use both train-val and pre-train sets of LSR3 dataset in this work)
├── list of folders
│   ├── five-digit numbered video IDs ending with (.mp4)
Preprocess the dataset
python preprocess.py --data_root= --preprocessed_root=

Additional options like batch_size and number of GPUs to use in parallel to use can also be set.

Preprocessed LRS3 folder structure
preprocessed_root (lrs3_preprocessed)
├── list of folders
|	├── Folders with five-digit numbered video IDs
|	│   ├── *.jpg (extracted face crops from each frame)
VGGSound folder structure

We use VGGSound dataset as noisy data which is mixed with the clean speech from LRS3 dataset. We download the audio files (*.wav files) from here.

data_root (vgg_sound)
├── *.wav (audio files)

Train!

There are two major steps: (i) Train the student-lipsync model, (ii) Train the Denoising model.

Train the Student-Lipsync model

Navigate to the lipsync folder: cd lipsync

The lipsync model can be trained using:

python train_student.py --data_root_lrs3_pretrain= --data_root_lrs3_train= --noise_data_root= --wav2lip_checkpoint_path= --checkpoint_dir=

Note: The pre-trained Wav2Lip teacher model must be downloaded (wav2lip weights) before training the student model.

Train the Denoising model!

Navigate to the main directory: cd ..

The denoising model can be trained using:

python train.py --data_root_lrs3_pretrain= --data_root_lrs3_train= --noise_data_root= --lipsync_student_model_path= --checkpoint_dir=

The model can be resumed for training as well. Look at python train.py --help for more details. Also, additional less commonly-used hyper-parameters can be set at the bottom of the audio/hparams.py file.


Evaluation

To be updated soon!


Licence and Citation

The software is licensed under the MIT License. Please cite the following paper if you have used this code:

@InProceedings{Hegde_2021_WACV,
    author    = {Hegde, Sindhu B. and Prajwal, K.R. and Mukhopadhyay, Rudrabha and Namboodiri, Vinay P. and Jawahar, C.V.},
    title     = {Visual Speech Enhancement Without a Real Visual Stream},
    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
    month     = {January},
    year      = {2021},
    pages     = {1926-1935}
}

Acknowledgements

Parts of the lipsync code has been modified using our Wav2Lip repository. The audio functions and parameters are taken from this TTS repository. We thank the authors for this wonderful code. The code for Face Detection has been taken from the face_alignment repository. We thank the authors for releasing their code and models.

Owner
Sindhu
Masters' by Research (MS) @ CVIT, IIIT Hyderabad
Sindhu
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022