Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Related tags

Deep LearningSCUNet
Overview

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

visitors

[Paper] [Online Demo]

The following results are obtained by our SCUNet with purely synthetic training data! We did not use the paired noisy/clean data by DND and SIDD during training!

Swin-Conv-UNet (SCUNet) denoising network

The architecture of the proposed Swin-Conv-UNet (SCUNet) denoising network. SCUNet exploits the swin-conv (SC) block as the main building block of a UNet backbone. In each SC block, the input is first passed through a 1×1 convolution, and subsequently is split evenly into two feature map groups, each of which is then fed into a swin transformer (SwinT) block and residual 3×3 convolutional (RConv) block, respectively; after that, the outputs of SwinT block and RConv block are concatenated and then passed through a 1×1 convolution to produce the residual of the input. “SConv” and “TConv” denote 2×2 strided convolution with stride 2 and 2×2 transposed convolution with stride 2, respectively.

New data synthesis pipeline for real image denoising

Schematic illustration of the proposed paired training patches synthesis pipeline. For a high quality image, a randomly shuffled degradation sequence is performed to produce a noisy image. Meanwhile, the resizing and reverse-forward tone mapping are performed to produce a corresponding clean image. A paired noisy/clean training patches are then cropped for training deep blind denoising model. Note that, since Poisson noise is signal-dependent, the dashed arrow for “Poisson” means the clean image is used to generate the Poisson noise. To tackle with the color shift issue, the dashed arrow for “Camera Sensor” means the reverse-forward tone mapping is performed on the clean image.

Synthesized noisy/clean patch pairs via our proposed training data synthesis pipeline. The size of the high quality image patch is 544×544. The size of the noisy/clean patches is 128×128.

Web Demo

Try Replicate web demo for SCUNet models here Replicate

Codes

  1. Download SCUNet models
python main_download_pretrained_models.py --models "SCUNet" --model_dir "model_zoo"
  1. Gaussian denoising

    1. grayscale images
    python main_test_scunet_gray_gaussian.py --model_name scunet_gray_25 --noise_level_img 25 --testset_name set12
    1. color images
    python main_test_scunet_color_gaussian.py --model_name scunet_color_25 --noise_level_img 25 --testset_name bsd68
  2. Blind real image denoising

    python main_test_scunet_real_application.py --model_name scunet_color_real_psnr --testset_name real3

Results on Gaussian denoising

Results on real image denoising

@article{zhang2022practical,
title={Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis},
author={Zhang, Kai and Li, Yawei and Liang, Jingyun and Cao, Jiezhang and Zhang, Yulun and Tang, Hao and Timofte, Radu and Van Gool, Luc},
journal={arXiv preprint},
year={2022}
}
Owner
Kai Zhang
Image Restoration; Inverse Problems
Kai Zhang
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022