Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Related tags

Deep LearningVG-Bert
Overview

Visually Grounded Bert Language Model

This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision with Cross-Modal Contrastive Learning.

To cite this work: Zhang, Y., Choi, M., Han, K., & Liu, Z. Explainable Semantic Space by Grounding Language toVision with Cross-Modal Contrastive Learning. (accepted by Neurips 2021).

Abstract

In natural language processing, most models try to learn semantic representa- tions merely from texts. The learned representations encode the “distributional semantics” but fail to connect to any knowledge about the physical world. In contrast, humans learn language by grounding concepts in perception and action and the brain encodes “grounded semantics” for cognition. Inspired by this notion and recent work in vision-language learning, we design a two-stream model for grounding language learning in vision. The model includes a VGG-based visual stream and a Bert-based language stream. The two streams merge into a joint representational space. Through cross-modal contrastive learning, the model first learns to align visual and language representations with the MS COCO dataset. The model further learns to retrieve visual objects with language queries through a cross-modal attention module and to infer the visual relations between the retrieved objects through a bilinear operator with the Visual Genome dataset. After training, the model’s language stream is a stand-alone language model capable of embedding concepts in a visually grounded semantic space. This semantic space manifests principal dimensions explainable with human intuition and neurobiological knowl- edge. Word embeddings in this semantic space are predictive of human-defined norms of semantic features and are segregated into perceptually distinctive clusters. Furthermore, the visually grounded language model also enables compositional language understanding based on visual knowledge and multimodal image search with queries based on images, texts, or their combinations.

Requirements

The model was trained with Python version: 3.7.4.

numpy==1.17.2, scipy==1.3.1, torch==1.7.1, torchvision==0.8.2, transformers==4.2.1, Pillow==6.2.0, tokenizers==0.9.4

Training

To train the model(s) in the paper, run the following commands:

stage-1: visual stream pretraining:

python visual_stream_pretraining.py \
-a vgg16_attention \
--pretrained \
--batch-size 200 \
--use-position learn \
--lr 0.01 \
/directory-to-ImageNet-dataset/ImageNet2012/

stage-2: two-stream grounding on MS COCO dataset with corss-modal contrastive loss:

python run.py \
--stage two_stream_pretraining \
--data-train /directory-to-COCO-dataset/COCO_train2017.json \
--data-val /directory-to-COCO-dataset/COCO_val2017.json \
--optim adam \
--learning-rate 5e-5 \
--batch-size 180 \
--n_epochs 100 \
--pretrained-vgg \
--image-model VGG16_Attention \
--use-position learn \
--language-model Bert_base \
--embedding-dim 768 \
--sigma 0.1 \
--dropout-rate 0.3 \
--base-model-learnable-layers 8 \
--load-pretrained /directory-to-pretrain-image-model/ \
--exp-dir /output-directory/two-stream-pretraining/

stage-3: visual relational grounding on Visual Genome dataset:

python run.py \
--stage relational_grounding \
--data-train /directory-to-Visual-Genome-dataset/VG_train_dataset_finalized.json \
--data-val /directory-to-Visual-Genome-dataset/VG_val_dataset_finalized.json \
--optim adam \
--learning-rate 1e-5 \
--batch-size 180 \
--n_epochs 150 \
--pretrained-vgg \
--image-model VGG16_Attention \
--use-position learn \
--language-model Bert_object \
--num-heads 8 \
--embedding-dim 768 \
--subspace-dim 32 \
--relation-num 115 \
--temperature 1 \
--dropout-rate 0.1 \
--base-model-learnable-layers 2 \
--load-pretrained /directory-to-pretrain-two-stream-model/ \
--exp-dir /output-directory/relational-grounding/

Transfer learning for cross-modal image search:

python transfer_cross_modal_retrieval.py \
--data-train /directory-to-COCO-dataset/COCO_train2017.json \
--data-val /directory-to-COCO-dataset/COCO_val2017.json \
--optim adam \
--learning-rate 5e-5 \
--batch-size 300 \
--n_epochs 150 \
--pretrained-vgg \
--image-model VGG16_Attention \
--use-position absolute_learn \
--language-model Bert_object \
--num-heads 8 \
--embedding-dim 768 \
--subspace-dim 32 \
--relation-num 115 \
--sigma 0.1 \
--dropout-rate 0.1 \
--load-pretrained /directory-to-pretrain-two-stream-model/ \
--exp-dir /output-directory/cross-modal-retrieval/

Evaluation

We include the jupyter notebook scripts for running evaluation tasks in our paper. See README in evaluation/.

Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English ⚖️ 🏆 🧑‍🎓 👩‍⚖️ Dataset Summary Inspired by the recent widespread use of th

95 Dec 08, 2022
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023