An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

Overview

AnalyticMesh

Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and topological errors that result from insufficient sampling, by means of mathematically guaranteed analysis.

This repository gives an implementation of Analytic Marching algorithm. This algorithm is initially proposed in our conference paper Analytic Marching: An Analytic Meshing Solution from Deep Implicit Surface Networks, then finally improved in our journal paper: Learning and Meshing from Deep Implicit Surface Networks Using an Efficient Implementation of Analytic Marching.

Our codes provide web pages for manipulating your models via graphic interface, and a backend for giving full control of the algorithm by writing python codes.

Installation

First please download our codes:

git clone https://github.com/Karbo123/AnalyticMesh.git --depth=1
cd AnalyticMesh
export AMROOT=`pwd`

Backend

Backend gives a python binding of analytic marching. You can write simple python codes in your own project after compiling the backend.

Our implementation supports pytorch, and possibly also other deep learning frameworks (e.g. tensorflow), but we do not test other frameworks yet.

Requirements:

Compilation:

cd $AMROOT/backend
mkdir build && cd build
cmake ..
make -j8
cd ..

If your pytorch version < 1.5.1, you may need to fix cpp extension compile failure on some envs.

Make sure compiled library can pass the tests. Run:

CUDA_VISIBLE_DEVICES=0 PYTHONDONTWRITEBYTECODE=1 pytest -s -p no:warnings -p no:cacheprovider

It will generate some files under folder $AMROOT/backend/tmp. Generally, those generated meshes (.ply) are watertight, you can check with meshlab.

If it passes all the tests, you can finally link to somewhere so that python can find it:

ln -s $AMROOT `python -c 'import site; print(site.getsitepackages()[0])'`

Frontend

We also provide an easy-to-use interactive interface to apply analytic marching to your input network model by just clicking your mouse. To use the web interface, you may follow steps below to install.

Requirement:

Before compiling, you may need to modify the server information given in file frontend/pages/src/assets/index.js. Then you can compile those files by running:

cd $AMROOT/frontend/pages
npm install
npm run build

The $AMROOT/frontend/pages/dist directory is ready to be deployed. If you want to deploy web pages to a server, please additionally follow these instructions.

To start the server, simply run:

cd $AMROOT/frontend && python server.py

You can open the interface via either opening file $AMROOT/frontend/pages/dist/index.html on your local machine or opening the url to which the page is deployed.

Demo

We provide some samples in $AMROOT/examples, you can try them.

Here we show a simple example (which is from $AMROOT/examples/2_polytope.py):

import os
import torch
from AnalyticMesh import save_model, load_model, AnalyticMarching

class MLPPolytope(torch.nn.Module):
    def __init__(self):
        super(MLPPolytope, self).__init__()
        self.linear0 = torch.nn.Linear(3, 14)
        self.linear1 = torch.nn.Linear(14, 1)
        with torch.no_grad(): # here we give the weights explicitly since training takes time
            weight0 = torch.tensor([[ 1,  1,  1],
                                    [-1, -1, -1],
                                    [ 0,  1,  1],
                                    [ 0, -1, -1],
                                    [ 1,  0,  1],
                                    [-1,  0, -1],
                                    [ 1,  1,  0],
                                    [-1, -1,  0],
                                    [ 1,  0,  0],
                                    [-1,  0,  0],
                                    [ 0,  1,  0],
                                    [ 0, -1,  0],
                                    [ 0,  0,  1],
                                    [ 0,  0, -1]], dtype=torch.float32)
            bias0 = torch.zeros(14)
            weight1 = torch.ones([14], dtype=torch.float32).unsqueeze(0)
            bias1 = torch.tensor([-2], dtype=torch.float32)

            add_noise = lambda x: x + torch.randn_like(x) * (1e-7)
            self.linear0.weight.copy_(add_noise(weight0))
            self.linear0.bias.copy_(add_noise(bias0))
            self.linear1.weight.copy_(add_noise(weight1))
            self.linear1.bias.copy_(add_noise(bias1))

    def forward(self, x):
        return self.linear1(torch.relu(self.linear0(x)))


if __name__ == "__main__":
    #### save onnx
    DIR = os.path.dirname(os.path.abspath(__file__)) # the directory to save files
    onnx_path = os.path.join(DIR, "polytope.onnx")
    save_model(MLPPolytope(), onnx_path) # we save the model as onnx format
    print(f"we save onnx to: {onnx_path}")

    #### save ply
    ply_path = os.path.join(DIR, "polytope.ply")
    model = load_model(onnx_path) # load as a specific model
    AnalyticMarching(model, ply_path) # do analytic marching
    print(f"we save ply to: {ply_path}")

API

We mainly provide the following two ways to use analytic marching:

  • Web interface (provides an easy-to-use graphic interface)
  • Python API (gives more detailed control)
  1. Web interface

    You should compile both the backend and frontend to use this web interface. Its usage is detailed in the user guide on the web page.

  2. Python API

    It's very simple to use, just three lines of code.

    from AnalyticMesh import load_model, AnalyticMarching 
    model = load_model(load_onnx_path) 
    AnalyticMarching(model, save_ply_path)

    If results are not satisfactory, you may need to change default values of the AnalyticMarching function.

    To obtain an onnx model file, you can just use the save_model function we provide.

    from AnalyticMesh import save_model
    save_model(your_custom_nn_module, save_onnx_path)

Some tips:

  • It is highly recommended that you try dichotomy first as the initialization method.
  • If CUDA runs out of memory, try setting voxel_configs. It will partition the space and solve them serially.
  • More details are commented in our source codes.

Use Analytic Marching in your own project

There are generally three ways to use Analytic Marching.

  1. Directly representing a single shape by a multi-layer perceptron. For a single object, you can simply represent the shape as a single network. For example, you can directly fit a point cloud by a multi-layer perceptron. In this way, the weights of the network uniquely determine the shape.
  2. Generating the weights of multi-layer perceptron from a hyper-network. To learn from multiple shapes, one can use hyper-network to generate the weights of multi-layer perceptron in a learnable manner.
  3. Re-parameterizing the latent code into the bias of the first layer. To learn from multiple shapes, we can condition the network with a latent code input at the first layer (e.g. 3+256 -> 512 -> 512 -> 1). Note that the concatenated latent code can be re-parameterized and combined into the bias of the first layer. More specifically, the computation of the first layer can be re-parameterized as , where the newly computed bias is .

About

This repository is mainly maintained by Jiabao Lei (backend) and Yongyi Su (frontend). If you have any question, feel free to create an issue on github.

If you find our works useful, please consider citing our papers.

@inproceedings{
    Lei2020,
    title = {Analytic Marching: An Analytic Meshing Solution from Deep Implicit Surface Networks},
    author = {Jiabao Lei and Kui Jia},
    booktitle = {International Conference on Machine Learning 2020 {ICML-20}},
    year = {2020},
    month = {7}
}

@misc{
    Lei2021,
    title={Learning and Meshing from Deep Implicit Surface Networks Using an Efficient Implementation of Analytic Marching}, 
    author={Jiabao Lei and Kui Jia and Yi Ma},
    year={2021},
    eprint={2106.10031},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Contact: [email protected]

Owner
Karbo
Karbo
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
Patches desktop steam to look like the new steamdeck ui.

steam_deck_ui_patch The Deck UI patch will patch the regular desktop steam to look like the brand new SteamDeck UI. This patch tool currently works on

The_IT_Dude 3 Aug 29, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen

Ryan Wesslen 1 Feb 08, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022