Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Overview

Constrained Logistic Regression

Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (via clogistic library).

The Data

We will use the processed version of telco customer churn data from Kaggle. The data can be downloaded here.

Steps

Define the constraints

For example:

# define constraints as dataframe
import numpy as np
constraint_df = pd.DataFrame(data=[
                                   ['gender',-np.inf,np.inf],
                                   ['SeniorCitizen',-np.inf,np.inf],
                                   ['Partner',-np.inf, 0],
                                   ['Dependents',-np.inf,0],
                                   ['tenure',-np.inf,0],
                                   ['PhoneService',-np.inf,0],
                                   ['PaperlessBilling',-np.inf,np.inf],
                                   ['MonthlyCharges',-np.inf,np.inf],
                                   ['intercept',-np.inf,np.inf]],
                             columns=['feature','lower_bound','upper_bound'])
constraint_df
|    | feature          |   lower_bound |   upper_bound |
|---:|:-----------------|--------------:|--------------:|
|  0 | gender           |          -inf |           inf |
|  1 | SeniorCitizen    |          -inf |           inf |
|  2 | Partner          |          -inf |             0 |
|  3 | Dependents       |          -inf |             0 |
|  4 | tenure           |          -inf |             0 |
|  5 | PhoneService     |          -inf |             0 |
|  6 | PaperlessBilling |          -inf |           inf |
|  7 | MonthlyCharges   |          -inf |           inf |
|  8 | intercept        |          -inf |           inf |

Model training via clogistic

# train using clogistic
from scipy.optimize import Bounds
from clogistic import LogisticRegression as clLogisticRegression

lower_bounds = constraint_df['lower_bound'].to_numpy()
upper_bounds = constraint_df['upper_bound'].to_numpy()
bounds = Bounds(lower_bounds, upper_bounds)

cl_logreg = clLogisticRegression(penalty='none')
cl_logreg.fit(X_train, y_train, bounds=bounds)

Retrieve the model coefficients

# coefficients as dataframe
cl_coef = pd.DataFrame({
    'feature': df.drop(columns='Churn').columns.tolist() + ['intercept'],
    'coefficient': list(cl_logreg.coef_[0]) + [cl_logreg.intercept_[0]]
})

cl_coef
|    | feature          |   coefficient |
|---:|:-----------------|--------------:|
|  0 | gender           |   0.0184168   |
|  1 | SeniorCitizen    |   0.506692    |
|  2 | Partner          |   3.85603e-09 |
|  3 | Dependents       |  -0.35721     |
|  4 | tenure           |  -0.0557211   |
|  5 | PhoneService     |  -0.796233    |
|  6 | PaperlessBilling |   0.398824    |
|  7 | MonthlyCharges   |   0.033197    |
|  8 | intercept        |  -1.36086     |
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022