Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Overview

Constrained Logistic Regression

Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (via clogistic library).

The Data

We will use the processed version of telco customer churn data from Kaggle. The data can be downloaded here.

Steps

Define the constraints

For example:

# define constraints as dataframe
import numpy as np
constraint_df = pd.DataFrame(data=[
                                   ['gender',-np.inf,np.inf],
                                   ['SeniorCitizen',-np.inf,np.inf],
                                   ['Partner',-np.inf, 0],
                                   ['Dependents',-np.inf,0],
                                   ['tenure',-np.inf,0],
                                   ['PhoneService',-np.inf,0],
                                   ['PaperlessBilling',-np.inf,np.inf],
                                   ['MonthlyCharges',-np.inf,np.inf],
                                   ['intercept',-np.inf,np.inf]],
                             columns=['feature','lower_bound','upper_bound'])
constraint_df
|    | feature          |   lower_bound |   upper_bound |
|---:|:-----------------|--------------:|--------------:|
|  0 | gender           |          -inf |           inf |
|  1 | SeniorCitizen    |          -inf |           inf |
|  2 | Partner          |          -inf |             0 |
|  3 | Dependents       |          -inf |             0 |
|  4 | tenure           |          -inf |             0 |
|  5 | PhoneService     |          -inf |             0 |
|  6 | PaperlessBilling |          -inf |           inf |
|  7 | MonthlyCharges   |          -inf |           inf |
|  8 | intercept        |          -inf |           inf |

Model training via clogistic

# train using clogistic
from scipy.optimize import Bounds
from clogistic import LogisticRegression as clLogisticRegression

lower_bounds = constraint_df['lower_bound'].to_numpy()
upper_bounds = constraint_df['upper_bound'].to_numpy()
bounds = Bounds(lower_bounds, upper_bounds)

cl_logreg = clLogisticRegression(penalty='none')
cl_logreg.fit(X_train, y_train, bounds=bounds)

Retrieve the model coefficients

# coefficients as dataframe
cl_coef = pd.DataFrame({
    'feature': df.drop(columns='Churn').columns.tolist() + ['intercept'],
    'coefficient': list(cl_logreg.coef_[0]) + [cl_logreg.intercept_[0]]
})

cl_coef
|    | feature          |   coefficient |
|---:|:-----------------|--------------:|
|  0 | gender           |   0.0184168   |
|  1 | SeniorCitizen    |   0.506692    |
|  2 | Partner          |   3.85603e-09 |
|  3 | Dependents       |  -0.35721     |
|  4 | tenure           |  -0.0557211   |
|  5 | PhoneService     |  -0.796233    |
|  6 | PaperlessBilling |   0.398824    |
|  7 | MonthlyCharges   |   0.033197    |
|  8 | intercept        |  -1.36086     |
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
An image classification app boilerplate to serve your deep learning models asap!

Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho

Smaranjit Ghose 27 Oct 06, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Notepy is a full-featured Notepad Python app

Notepy A full featured python text-editor Notable features Autocompletion for parenthesis and quote Auto identation Syntax highlighting Compile and ru

Mirko Rovere 11 Sep 28, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
Small little script to scrape, parse and check for active tor nodes. Can be used as proxies.

TorScrape TorScrape is a small but useful script made in python that scrapes a website for active tor nodes, parse the html and then save the nodes in

5 Dec 04, 2022