LiDAR R-CNN: An Efficient and Universal 3D Object Detector

Overview

LiDAR R-CNN: An Efficient and Universal 3D Object Detector

Introduction

This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object Detector. In this work, we present LiDAR R-CNN, a second stage detector that can generally improve any existing 3D detector. We find a common problem in Point-based RCNN, which is the learned features ignore the size of proposals, and propose several methods to remedy it. Evaluated on WOD benchmarks, our method significantly outperforms previous state-of-the-art.

中文介绍:https://zhuanlan.zhihu.com/p/359800738

Requirements

All the codes are tested in the following environment:

  • Linux (tested on Ubuntu 16.04)
  • Python 3.6+
  • PyTorch 1.5 or higher (tested on PyTorch 1.5, 6, 7)
  • CUDA 10.1

To install pybind11:

git clone [email protected]:pybind/pybind11.git
cd pybind11
mkdir build && cd build
cmake .. && make -j 
sudo make install

To install requirements:

pip install -r requirements.txt
apt-get install ninja-build libeigen3-dev

Install LiDAR_RCNN library:

python setup.py develop --user

Preparing Data

Please refer to data processer to generate the proposal data.

Training

After preparing WOD data, we can train the vehicle only model in the paper, run this command:

python -m torch.distributed.launch --nproc_per_node=4 tools/train.py --cfg config/lidar_rcnn.yaml --name lidar_rcnn

For 3 class in WOD:

python -m torch.distributed.launch --nproc_per_node=8 tools/train.py --cfg config/lidar_rcnn_all_cls.yaml --name lidar_rcnn_all

The models and logs will be saved to work_dirs/outputs.

Evaluation

To evaluate, run distributed testing with 4 gpus:

python -m torch.distributed.launch --nproc_per_node=4 tools/test.py --cfg config/lidar_rcnn.yaml --checkpoint outputs/lidar_rcnn/checkpoint_lidar_rcnn_59.pth.tar
python tools/create_results.py --cfg config/lidar_rcnn.yaml

Note that, you should keep the nGPUS in config equal to nproc_per_node .This will generate a val.bin file in the work_dir/results. You can create submission to Waymo server using waymo-open-dataset code by following the instructions here.

Results

Our model achieves the following performance on:

Waymo Open Dataset Challenges (3D Detection)

Proposals from Class Channel 3D AP L1 Vehicle 3D AP L1 Pedestrian 3D AP L1 Cyclist
PointPillars Vehicle 1x 75.6 - -
PointPillars Vehicle 2x 75.6 - -
PointPillars 3 Class 1x 73.4 70.7 67.4
PointPillars 3 Class 2x 73.8 71.9 69.4
Proposals from Class Channel 3D AP L2 Vehicle 3D AP L2 Pedestrian 3D AP L2 Cyclist
PointPillars Vehicle 1x 66.8 - -
PointPillars Vehicle 2x 67.9 - -
PointPillars 3 Class 1x 64.8 62.4 64.8
PointPillars 3 Class 2x 65.1 63.5 66.8

Citation

If you find our paper or repository useful, please consider citing

@article{li2021lidar,
  title={LiDAR R-CNN: An Efficient and Universal 3D Object Detector},
  author={Li, Zhichao and Wang, Feng and Wang, Naiyan},
  journal={CVPR},
  year={2021},
}

Acknowledgement

Comments
  • How is the PP model trained

    How is the PP model trained

    This model file checkpoints/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car-9fa20624.pth in the docs cannot be found in mmdet3d official repo (they only have the interval-5 pretrained models). Are the proposals extracted with interval-1 models: 3d-car and 3d-3class? If I want to reproduce your results, do I need to first train with these two configs? Thanks.

    opened by haotian-liu 21
  • checkpoint shape error

    checkpoint shape error

    hi~ Zhichao Li /Feng Wang/ Naiyan Wang~

    I am very interested in your work LIDAR RCNN, but when I use the LIDAR RCNN pretrained model you gave me checkpoint_lidar_rcnn_59.pth.tar(MD5:6416c502af3cb73f0c39dd0cabdee2cb, I found that the weights of the pretrained model are 9 dimensions, but your input data is 12 dimensions.

    Can you provide me a pretrained model whose dimensions are correctly matched.

    image

    image

    I found that in one of your commits, the dimension was increased from 9 to 12 dimensions, but the latest pre-trained model is still 9 dimensions

    opened by hutao568 11
  • Transfered To Nuscenes Dataset,Performance decline

    Transfered To Nuscenes Dataset,Performance decline

    When I transfered it to the CenterpointNet and nuscenes datasets, Then evaluated on nuscense, it didn’t seem to work. I don’t know what went wrong, Looking forward to your suggestions and comments.

    opened by Suodislie 9
  • Run inference on single GPU

    Run inference on single GPU

    Hi, I am able to do all setup as per instructions given in README In the evaluation step,

    python -m torch.distributed.launch --nproc_per_node=4 tools/test.py --cfg config/lidar_rcnn.yaml --checkpoint outputs/lidar_rcnn/checkpoint_lidar_rcnn_59.pth.tar
    python tools/create_results.py --cfg config/lidar_rcnn.yaml
    

    I am facing the following questions while running the evaluation.

    1. How to change the command to run a single GPU, nproc_per_node needs to be 1.
    2. What should be MODEL.Frame number for checkpoint_lidar_rcnn_59.pth.tar? Since I am trying to understand the evaluation, kindly help me on this to fix.
    opened by kamalasubha 7
  • The cls scores are useless on my own dataset

    The cls scores are useless on my own dataset

    Thanks for your awesome works. When I use Lidar-RCNN on my own dataset, the refine score is useless, Most objects are classified as backgrounds. In addition, the average refined center error is only reduced by 1 cm. I don't know Is this normal?

    opened by xiuzhizheng 6
  • What processes in LIDAR-RCNN are specific for waymo dataset?

    What processes in LIDAR-RCNN are specific for waymo dataset?

    Hello, just like the title saying, I wonder what are the specific processes for WOD, which means if I want to use LIDAR R-CNN on my own dataset, I have to do it differently. I already change the data_processor and everything I can think of in the loader and creat_results that are respect to waymo dataset, then I use the refined results to perform evaluation on my own dataset. However, I got NAN on rotation error, and the MAP is pretty low. issue2

    Therefore, I'm confused about some subtle processes that are performed just for waymo not for other datasets. For example, compute heading residual is necessary for using LiDAR R-CNN? Did you guys use rotation in some sublte ways? (In my dataset, the rotation is according to y axis, while in your code, it's x axis, but the way of computing rotZ is the same, I already changed it.) image

    This bug has been driving me crazy, that's why my issue description above is a bit messy, forgive me please. I would be grateful if you could provide me some hints. Thank you a lot. Save this almost desperate kid, please.🥺

    opened by QingXIA233 6
  • The num of boxes of matching_gt_bbox is more than that of valid_gt?

    The num of boxes of matching_gt_bbox is more than that of valid_gt?

    Hello, sorry I come back with another question...... Recently, I've been working on using LiDAR R-CNN to refine the results of the CenterPoint-PP model with my own dataset. During data processing for my own dataset, I notice that the results of my CenterPoint-PP model has more bboxes detected than the ground truth ones (false detection case). When performing get_matching_by_iou function in LiDAR R-CNN, the obtained matching_gt_bbox has the same number of bboxes as the model predictions instead of the groundtruth data. I'm a bit confused about this process. Now that we are trying to do refinement, shouldn't we remove the falsely detected bboxes in the results and keep to the groundtruth? If so, why the matching bboxes is according to the predictions instead of groundtruth?

    issue

    Maybe I have some misunderstandings here, it would be a great helper if you could give me some hints. Thanks in advance.

    opened by QingXIA233 6
  • The pretrained model

    The pretrained model

    Hi, I am very interested in your paper, and I am reproducing it. The pretrained model of pointpillar provided in mmdetection3d does not reach the performance shown in the Table 2 below, so could you please provide the pretrained model of pointpillar in Table 2? Thank you very much!

    lidar_rcnn_per

    opened by SSY-1276 6
  • About train one iter data

    About train one iter data

    Hi~Sorry to bother you again! Is that right? The prediction frames of all frames are extracted at one time and then disrupted globally, which means that when lidar RCNN trains a batch, it contains different boxes of different frames. When the batchsize is 256, the extreme case may contain up to 256 frames, and each frame takes a box. Below is my idea! If I train two frames at a time, extract proposals through the frozen one-stage network, and then use lidarcnn for end-to-end training, is it ok?Do u have an idea about how to design the ROI sampler ratio?

    opened by DongfeiJi 6
  • Collaboration with MMDetection3D

    Collaboration with MMDetection3D

    Hi developers of LiDAR R-CNN,

    Congrats on the acceptance of the paper!

    LiDAR R-CNN achieves new state-of-the-art results through simple yet effective improvement, which is very insightful to the community. We also found that the baseline is based on the implementations in MMDetection3D.

    Therefore, I am coming to ask, as we believe LiDAR R-CNN might have a great impact on the community, would you like to also contribute an implementation of LiDAR R-CNN to MMDetection3D? If so, maybe we could have a more detailed discussion about that? MMDetection3D welcomes any kind of contribution. Please feel free to ask if there is anything from the MMDet3D team that could help.

    On behalf of the MMDet3D Development Team

    BR,

    Wenwei

    opened by ZwwWayne 6
  • checkpoint shape error

    checkpoint shape error

    hi~ Zhichao Li /Feng Wang/ Naiyan Wang~ 我对你们的工作LIDAR RCNN非常感兴趣,但是我在使用您给我的LIDAR RCNN预训练模型checkpoint_lidar_rcnn_59.pth.tar(MD5:6416c502af3cb73f0c39dd0cabdee2cb 时,发现预训练模型的权重是9维,但是你们的输入数据是12维12维 您可以提供给我维度可以正确匹配的预训练模型吗

    opened by hutao568 4
Releases(v0.1.1)
Owner
TuSimple
The Future of Trucking
TuSimple
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
Anomaly detection in multi-agent trajectories: Code for training, evaluation and the OpenAI highway simulation.

Anomaly Detection in Multi-Agent Trajectories for Automated Driving This is the official project page including the paper, code, simulation, baseline

12 Dec 02, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022