Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Related tags

Deep LearningSMFI
Overview

Fight Detection from Still Images in the Wild

Detecting fights from still images is an important task required to limit the distribution of social media images with fight content, in order to prevent the negative effects of such violent media items. For this reason, in this study we addressed the problem of fight detection from still images collected from web and social media. We explored how well one can detect fights from just a single still image.

In this context, a new image dataset on the fight recognition from still images task is collected named Social Media Fight Images (SMFI) dataset. The dataset samples gathered from social media (Twitter and Google) and NTU-CCTV Fights 1 dataset. Since the main concern is recognizing fight actions in the wild, real-world scenarios are included in the dataset where a mass amount of them are spontaneous recordings of fight actions. Using different keywords while crawling the data, the regional diversity is also maintained since the social media uploadings are mostly regional where users share the content in their own language. Some example images from the dataset are given below:

samples

Both fight and non-fight samples are collected from the same domain where the non-fight samples are also content likely to be shared on social media. Hard non-fight samples are also included in the dataset which displays the actions that might be misinterpreted as fight such as hugging, throwing ball, dancing and more. This prevents the dataset bias, so that the trained models focuses on the actions and the performers on the scene instead of benefiting other characteristics such as motion blur. The distribution of the dataset samples among each class and source is given below:

Twitter Google NTU CCTV-Fights Total
Fight 2247 162 330 2739
Non-fight 2642 146 164 2952
Total 4889 308 494 5691

Due to the copyright issues the dataset images are not shared directly and the links to the images / videos are shared. As the dataset samples might be deleted in time by the users or the authorities, the size of the dataset is subject to change.

Dataset Format

The dataset samples are shared through a CSV file where the columns are as follows:

  • Image ID: Unique ID assigned to each image.
  • Class: class of the image as fight / nofight
  • Source: The source of the images or videos as twitter_img / twitter_video / google / ntu-cctv
  • URL: The link for the images / videos.
    • For Twitter and Google data, image and video URLs are shared.
    • For the NTU CCTV-Fights data, the path to the original video is shared.
  • Frame number: If the image is extracted from a video, this column indicates the number of frame within the video.
    • For Twitter videos, the frame number is the number of frame (0-9) out of 10 uniformly sampled frames from each video.
    • For NTU CCTV-Fight videos, the frame number is the number of frame (0-N) out of all frames (N) extracted from each video.

In order to retrieve the dataset, you should first download the NTU CCTV-Fights here.

Citation

TBA

References

1 Mauricio Perez, Alex C. Kot, Anderson Rocha, “Detection of Real-world Fights in Surveillance Videos”, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019

Owner
Şeymanur Aktı
Şeymanur Aktı
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
BlockUnexpectedPackets - Preventing BungeeCord CPU overload due to Layer 7 DDoS attacks by scanning BungeeCord's logs

BlockUnexpectedPackets This script automatically blocks DDoS attacks that are sp

SparklyPower 3 Mar 31, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Jia Research Lab 116 Dec 20, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023