Caffe models in TensorFlow

Overview

Caffe to TensorFlow

Convert Caffe models to TensorFlow.

Usage

Run convert.py to convert an existing Caffe model to TensorFlow.

Make sure you're using the latest Caffe format (see the notes section for more info).

The output consists of two files:

  1. A data file (in NumPy's native format) containing the model's learned parameters.
  2. A Python class that constructs the model's graph.

Examples

See the examples folder for more details.

Verification

The following converted models have been verified on the ILSVRC2012 validation set using validate.py.

Model Top 5 Accuracy
ResNet 152 92.92%
ResNet 101 92.63%
ResNet 50 92.02%
VGG 16 89.88%
GoogLeNet 89.06%
Network in Network 81.21%
CaffeNet 79.93%
AlexNet 79.84%

Notes

  • Only the new Caffe model format is supported. If you have an old model, use the upgrade_net_proto_text and upgrade_net_proto_binary tools that ship with Caffe to upgrade them first. Also make sure you're using a fairly recent version of Caffe.

  • It appears that Caffe and TensorFlow cannot be concurrently invoked (CUDA conflicts - even with set_mode_cpu). This makes it a two-stage process: first extract the parameters with convert.py, then import it into TensorFlow.

  • Caffe is not strictly required. If PyCaffe is found in your PYTHONPATH, and the USE_PYCAFFE environment variable is set, it will be used. Otherwise, a fallback will be used. However, the fallback uses the pure Python-based implementation of protobuf, which is astoundingly slow (~1.5 minutes to parse the VGG16 parameters). The experimental CPP protobuf backend doesn't particularly help here, since it runs into the file size limit (Caffe gets around this by overriding this limit in C++). A cleaner solution here would be to implement the loader as a C++ module.

  • Only a subset of Caffe layers and accompanying parameters are currently supported.

  • Not all Caffe models can be converted to TensorFlow. For instance, Caffe supports arbitrary padding whereas TensorFlow's support is currently restricted to SAME and VALID.

  • The border values are handled differently by Caffe and TensorFlow. However, these don't appear to affect things too much.

  • Image rescaling can affect the ILSVRC2012 top 5 accuracy listed above slightly. VGG16 expects isotropic rescaling (anisotropic reduces accuracy to 88.45%) whereas BVLC's implementation of GoogLeNet expects anisotropic (isotropic reduces accuracy to 87.7%).

  • The support class kaffe.tensorflow.Network has no internal dependencies. It can be safely extracted and deployed without the rest of this library.

  • The ResNet model uses 1x1 convolutions with a stride of 2. This is currently only supported in the master branch of TensorFlow (the latest release at time of writing being v0.8.0, which does not support it).

Owner
Saumitro Dasgupta
Saumitro Dasgupta
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022