Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Overview

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yuke Zhu

Project | arxiv

Introduction

GIGA (Grasp detection via Implicit Geometry and Affordance) is a network that jointly detects 6 DOF grasp poses and reconstruct the 3D scene. GIGA takes advantage of deep implicit functions, a continuous and memory-efficient representation, to enable differentiable training of both tasks. GIGA takes as input a Truncated Signed Distance Function (TSDF) representation of the scene, and predicts local implicit functions for grasp affordance and 3D occupancy. By querying the affordance implict functions with grasp center candidates, we can get grasp quality, grasp orientation and gripper width at these centers. GIGA is trained on a synthetic grasping dataset generated with physics simulation.

Installation

  1. Create a conda environment.

  2. Install packages list in requirements.txt. Then install torch-scatter following here, based on pytorch version and cuda version.

  3. Go to the root directory and install the project locally using pip

pip install -e .
  1. Build ConvONets dependents by running python scripts/convonet_setup.py build_ext --inplace.

  2. Download the data, then unzip and place the data folder under the repo's root. Pretrained models of GIGA, GIGA-Aff and VGN are in data/models.

Self-supervised Data Generation

Raw synthetic grasping trials

Pile scenario:

python scripts/generate_data_parallel.py --scene pile --object-set pile/train --num-grasps 4000000 --num-proc 40 --save-scene ./data/pile/data_pile_train_random_raw_4M

Packed scenario:

python scripts/generate_data_parallel.py --scene packed --object-set packed/train --num-grasps 4000000 --num-proc 40 --save-scene ./data/pile/data_packed_train_random_raw_4M

Please run python scripts/generate_data_parallel.py -h to print all options.

Data clean and processing

First clean and balance the data using:

python scripts/clean_balance_data.py /path/to/raw/data

Then construct the dataset (add noise):

python scripts/construct_dataset_parallel.py --num-proc 40 --single-view --add-noise dex /path/to/raw/data /path/to/new/data

Save occupancy data

Sampling occupancy data on the fly can be very slow and block the training, so I sample and store the occupancy data in files beforehand:

python scripts/save_occ_data_parallel.py /path/to/raw/data 100000 2 --num-proc 40

Please run python scripts/save_occ_data_parallel.py -h to print all options.

Training

Train GIGA

Run:

# GIGA
python scripts/train_giga.py --dataset /path/to/new/data --dataset_raw /path/to/raw/data

Simulated grasping

Run:

python scripts/sim_grasp_multiple.py --num-view 1 --object-set (packed/test | pile/test) --scene (packed | pile) --num-rounds 100 --sideview --add-noise dex --force --best --model /path/to/model --type (vgn | giga | giga_aff) --result-path /path/to/result

This commands will run experiment with each seed specified in the arguments.

Run python scripts/sim_grasp_multiple.py -h to print a complete list of optional arguments.

Related Repositories

  1. Our code is largely based on VGN

  2. We use ConvONets as our backbone.

Owner
UT-Austin Robot Perception and Learning Lab
UT-Austin Robot Perception and Learning Lab
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Matthew Colbrook 1 Apr 08, 2022
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023