Kroomsa: A search engine for the curious

Overview

Kroomsa

Kroomsa

A search engine for the curious. It is a search algorithm designed to engage users by exposing them to relevant yet interesting content during their session.

Description

The search algorithm implemented in your website greatly influences visitor engagement. A decent implementation can significantly reduce dependency on standard search engines like Google for every query thus, increasing engagement. Traditional methods look at terms or phrases in your query to find relevant content based on syntactic matching. Kroomsa uses semantic matching to find content relevant to your query. There is a blog post expanding upon Kroomsa's motivation and its technical aspects.

Getting Started

Prerequisites

  • Python 3.6.5
  • Run the project directory setup: python3 ./setup.py in the root directory.
  • Tensorflow's Universal Sentence Encoder 4
    • The model is available at this link. Download the model and extract the zip file in the /vectorizer directory.
  • MongoDB is used as the database to collate Reddit's submissions. MongoDB can be installed following this link.
  • To fetch comments of the reddit submissions, PRAW is used. To scrape credentials are needed that authorize the script for the same. This is done by creating an app associated with a reddit account by following this link. For reference you can follow this tuorial written by Shantnu Tiwari.
    • Register multiple instances and retrieve their credentials, then add them to the /config under bot_codes parameter in the following format: "client_id client_secret user_agent" as list elements separated by ,.
  • Docker-compose (For dockerized deployment only): Install the latest version following this link.

Installing

  • Create a python environment and install the required packages for preprocessing using: python3 -m pip install -r ./preprocess_requirements.txt
  • Collating a dataset of Reddit submissions
    • Scraping posts
      • Pushshift's API is being used to fetch Reddit submissions. In the root directory, run the following command: python3 ./pre_processing/scraping/questions/scrape_questions.py. It launches a script that scrapes the subreddits sequentially till their inception and stores the submissions as JSON objects in /pre_processing/scraping/questions/scraped_questions. It then partitions the scraped submissions into as many equal parts as there are registered instances of bots.
    • Scraping comments
      • After populating the configuration with bot_codes, we can begin scraping the comments using the partitioned submission files created while scraping submissions. Using the following command: python3 ./pre_processing/scraping/comments/scrape_comments.py multiple processes are spawned that fetch comment streams simultaneously.
    • Insertion
      • To insert the submissions and associated comments, use the following commands: python3 ./pre_processing/db_insertion/insertion.py. It inserts the posts and associated comments in mongo.
      • To clean the comments and tag the posts that aren't public due to any reason, Run python3 ./post_processing/post_processing.py. Apart from cleaning, it also adds emojis to each submission object (This behavior is configurable).
  • Creating a FAISS Index
    • To create a FAISS index, run the following command: python3 ./index/build_index.py. By default, it creates an exhaustive IDMap, Flat index but is configurable through the /config.
  • Database dump (For dockerized deployment)
    • For dockerized deployment, a database dump is required in /mongo_dump. Use the following command at the root dir to create a database dump. mongodump --db database_name(default: red) --collection collection_name(default: questions) -o ./mongo_dump.

Execution

  • Local deployment (Using Gunicorn)
    • Create a python environment and install the required packages using the following command: python3 -m pip install -r ./inference_requirements.txt
    • A local instance of Kroomsa can be deployed using the following command: gunicorn -c ./gunicorn_config.py server:app
  • Dockerized demo
    • Set the demo_mode to True in /config.
    • Build images: docker-compose build
    • Deploy: docker-compose up

Authors

License

This project is licensed under the Apache License Version 2.0

D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM

7 Sep 01, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022