MaskTrackRCNN for video instance segmentation based on mmdetection

Overview

MaskTrackRCNN for video instance segmentation

Introduction

This repo serves as the official code release of the MaskTrackRCNN model for video instance segmentation described in the tech report:

@article{ Yang2019vis,
  author = {Linjie Yang and Yuchen Fan and Ning Xu},  
  title = {Video instance segmentation},
  journal = {CoRR},
  volume = {abs/1905.04804},
  year = {2019},
  url = {https://arxiv.org/abs/1905.04804}
}

In this work, a new task video instance segmentation is presented. Video instance segmentation extends the image instance segmentation task from the image domain to the video domain. The new problem aims at simultaneous detection, segmentation and tracking of object instances in videos. YouTubeVIS, a new dataset tailored for this task is collected based on the current largest video object segmentation dataset YouTubeVOS. Sample annotations of a video clip can be seen below. We also proposed an algorithm to jointly detect, segment, and track object instances in a video, named MaskTrackRCNN. A tracking head is added to the original MaskRCNN model to match objects across frames. An overview of the algorithm is shown below.

Installation

This repo is built based on mmdetection commit hash f3a939f. Please refer to INSTALL.md to install the library. You also need to install a customized COCO API for YouTubeVIS dataset. You can use following commands to create conda env with all dependencies.

conda create -n MaskTrackRCNN -y
conda activate MaskTrackRCNN
conda install -c pytorch pytorch=0.4.1 torchvision cuda92 -y
conda install -c conda-forge cudatoolkit-dev=9.2 opencv -y
conda install cython -y
pip install git+https://github.com/youtubevos/cocoapi.git#"egg=pycocotools&subdirectory=PythonAPI"
bash compile.sh
pip install .

You may also need to follow #1 to load MSCOCO pretrained models.

Model training and evaluation

Our model is based on MaskRCNN-resnet50-FPN. The model is trained end-to-end on YouTubeVIS based on a MSCOCO pretrained checkpoint (link).

Training

  1. Download YouTubeVIS from here.
  2. Symlink the train/validation dataset to $MMDETECTION/data folder. Put COCO-style annotations under $MMDETECTION/data/annotations.
mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── train
│   ├── val
│   ├── annotations
│   │   ├── instances_train_sub.json
│   │   ├── instances_val_sub.json
  1. Run python3 tools/train.py configs/masktrack_rcnn_r50_fpn_1x_youtubevos.py to train the model. For reference to arguments such as learning rate and model parameters, please refer to configs/masktrack_rcnn_r50_fpn_1x_youtubevos.py

Evaluation

Our pretrained model is available for download at Google Drive. Run the following command to evaluate the model on YouTubeVIS.

python3 tools/test_video.py configs/masktrack_rcnn_r50_fpn_1x_youtubevos.py [MODEL_PATH] --out [OUTPUT_PATH] --eval segm

A json file containing the predicted result will be generated as OUTPUT_PATH.json. YouTubeVIS currently only allows evaluation on the codalab server. Please upload the generated result to codalab server to see actual performances.

License

This project is released under the Apache 2.0 license.

Contact

If you have any questions regarding the repo, please contact Linjie Yang ([email protected]) or create an issue.

HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023