This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Related tags

Deep LearningDEKR
Overview

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression

Introduction

In this paper, we are interested in the bottom-up paradigm of estimating human poses from an image. We study the dense keypoint regression framework that is previously inferior to the keypoint detection and grouping framework. Our motivation is that regressing keypoint positions accurately needs to learn representations that focus on the keypoint regions.

We present a simple yet effective approach, named disentangled keypoint regression (DEKR). We adopt adaptive convolutions through pixel-wise spatial transformer to activate the pixels in the keypoint regions and accordingly learn representations from them. We use a multi-branch structure for separate regression: each branch learns a representation with dedicated adaptive convolutions and regresses one keypoint. The resulting disentangled representations are able to attend to the keypoint regions, respectively, and thus the keypoint regression is spatially more accurate. We empirically show that the proposed direct regression method outperforms keypoint detection and grouping methods and achieves superior bottom-up pose estimation results on two benchmark datasets, COCO and CrowdPose.

Main Results

Results on COCO val2017 without multi-scale test

Backbone Input size #Params GFLOPs AP AP .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_hrnet_w32 512x512 29.6M 45.4 0.680 0.867 0.745 0.621 0.777 0.730 0.898 0.784 0.662 0.827
pose_hrnet_w48 640x640 65.7M 141.5 0.710 0.883 0.774 0.667 0.785 0.760 0.914 0.815 0.706 0.840

Results on COCO val2017 with multi-scale test

Backbone Input size #Params GFLOPs AP AP .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_hrnet_w32 512x512 29.6M 45.4 0.707 0.877 0.771 0.662 0.778 0.759 0.913 0.813 0.705 0.836
pose_hrnet_w48 640x640 65.7M 141.5 0.723 0.883 0.786 0.686 0.786 0.777 0.924 0.832 0.728 0.849

Results on COCO test-dev2017 without multi-scale test

Backbone Input size #Params GFLOPs AP AP .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_hrnet_w32 512x512 29.6M 45.4 0.673 0.879 0.741 0.615 0.761 0.724 0.908 0.782 0.654 0.819
pose_hrnet_w48 640x640 65.7M 141.5 0.700 0.894 0.773 0.657 0.769 0.754 0.927 0.816 0.697 0.832

Results on COCO test-dev2017 with multi-scale test

Backbone Input size #Params GFLOPs AP AP .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_hrnet_w32 512x512 29.6M 45.4 0.698 0.890 0.766 0.652 0.765 0.751 0.924 0.811 0.695 0.828
pose_hrnet_w48 640x640 65.7M 141.5 0.710 0.892 0.780 0.671 0.769 0.767 0.932 0.830 0.715 0.839

Results on CrowdPose test without multi-scale test

Method AP AP .5 AP .75 AP (E) AP (M) AP (H)
pose_hrnet_w32 0.657 0.857 0.704 0.730 0.664 0.575
pose_hrnet_w48 0.673 0.864 0.722 0.746 0.681 0.587

Results on CrowdPose test with multi-scale test

Method AP AP .5 AP .75 AP (E) AP (M) AP (H)
pose_hrnet_w32 0.670 0.854 0.724 0.755 0.680 0.569
pose_hrnet_w48 0.680 0.855 0.734 0.766 0.688 0.584

Results with matching regression results to the closest keypoints detected from the keypoint heatmaps

DEKR-w32-SS DEKR-w32-MS DEKR-w48-SS DEKR-w48-MS
coco_val2017 0.680 0.710 0.710 0.728
coco_test-dev2017 0.673 0.702 0.701 0.714
crowdpose_test 0.655 0.675 0.670 0.683

Note:

  • Flip test is used.
  • GFLOPs is for convolution and linear layers only.

Environment

The code is developed using python 3.6 on Ubuntu 16.04. NVIDIA GPUs are needed. The code is developed and tested using 4 NVIDIA V100 GPU cards for HRNet-w32 and 8 NVIDIA V100 GPU cards for HRNet-w48. Other platforms are not fully tested.

Quick start

Installation

  1. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.

  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Install COCOAPI:

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    # Install into global site-packages
    make install
    # Alternatively, if you do not have permissions or prefer
    # not to install the COCO API into global site-packages
    python3 setup.py install --user
    

    Note that instructions like # COCOAPI=/path/to/install/cocoapi indicate that you should pick a path where you'd like to have the software cloned and then set an environment variable (COCOAPI in this case) accordingly.

  4. Install CrowdPoseAPI exactly the same as COCOAPI.

  5. Init output(training model output directory) and log(tensorboard log directory) directory:

    mkdir output 
    mkdir log
    

    Your directory tree should look like this:

    ${POSE_ROOT}
    ├── data
    ├── model
    ├── experiments
    ├── lib
    ├── tools 
    ├── log
    ├── output
    ├── README.md
    ├── requirements.txt
    └── setup.py
    
  6. Download pretrained models and our well-trained models from zoo(OneDrive) and make models directory look like this:

    ${POSE_ROOT}
    |-- model
    `-- |-- imagenet
        |   |-- hrnet_w32-36af842e.pth
        |   `-- hrnetv2_w48_imagenet_pretrained.pth
        |-- pose_coco
        |   |-- pose_dekr_hrnetw32_coco.pth
        |   `-- pose_dekr_hrnetw48_coco.pth
        |-- pose_crowdpose
        |   |-- pose_dekr_hrnetw32_crowdpose.pth
        |   `-- pose_dekr_hrnetw48_crowdpose.pth
        `-- rescore
            |-- final_rescore_coco_kpt.pth
            `-- final_rescore_crowd_pose_kpt.pth
    

Data preparation

For COCO data, please download from COCO download, 2017 Train/Val is needed for COCO keypoints training and validation. Download and extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- coco
    `-- |-- annotations
        |   |-- person_keypoints_train2017.json
        |   `-- person_keypoints_val2017.json
        `-- images
            |-- train2017.zip
            `-- val2017.zip

For CrowdPose data, please download from CrowdPose download, Train/Val is needed for CrowdPose keypoints training. Download and extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- crowdpose
    `-- |-- json
        |   |-- crowdpose_train.json
        |   |-- crowdpose_val.json
        |   |-- crowdpose_trainval.json (generated by tools/crowdpose_concat_train_val.py)
        |   `-- crowdpose_test.json
        `-- images.zip

After downloading data, run python tools/crowdpose_concat_train_val.py under ${POSE_ROOT} to create trainval set.

Training and Testing

Testing on COCO val2017 dataset without multi-scale test using well-trained pose model

python tools/valid.py \
    --cfg experiments/coco/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_coco_x140.yaml \
    TEST.MODEL_FILE models/pose_coco/pose_dekr_hrnetw32_coco.pth

Testing on COCO test-dev2017 dataset without multi-scale test using well-trained pose model

python tools/valid.py \
    --cfg experiments/coco/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_coco_x140.yaml \
    TEST.MODEL_FILE models/pose_coco/pose_dekr_hrnetw32_coco.pth \ 
    DATASET.TEST test-dev2017

Testing on COCO val2017 dataset with multi-scale test using well-trained pose model

python tools/valid.py \
    --cfg experiments/coco/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_coco_x140.yaml \
    TEST.MODEL_FILE models/pose_coco/pose_dekr_hrnetw32_coco.pth \ 
    TEST.NMS_THRE 0.15 \
    TEST.SCALE_FACTOR 0.5,1,2

Testing on COCO val2017 dataset with matching regression results to the closest keypoints detected from the keypoint heatmaps

python tools/valid.py \
    --cfg experiments/coco/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_coco_x140.yaml \
    TEST.MODEL_FILE models/pose_coco/pose_dekr_hrnetw32_coco.pth \ 
    TEST.MATCH_HMP True

Testing on crowdpose test dataset without multi-scale test using well-trained pose model

python tools/valid.py \
    --cfg experiments/crowdpose/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_crowdpose_x300.yaml \
    TEST.MODEL_FILE models/pose_crowdpose/pose_dekr_hrnetw32_crowdpose.pth

Testing on crowdpose test dataset with multi-scale test using well-trained pose model

python tools/valid.py \
    --cfg experiments/crowdpose/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_crowdpose_x300.yaml \
    TEST.MODEL_FILE models/pose_crowdpose/pose_dekr_hrnetw32_crowdpose.pth \ 
    TEST.NMS_THRE 0.15 \
    TEST.SCALE_FACTOR 0.5,1,2

Testing on crowdpose test dataset with matching regression results to the closest keypoints detected from the keypoint heatmaps

python tools/valid.py \
    --cfg experiments/crowdpose/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_crowdpose_x300.yaml \
    TEST.MODEL_FILE models/pose_crowdpose/pose_dekr_hrnetw32_crowdpose.pth \ 
    TEST.MATCH_HMP True

Training on COCO train2017 dataset

python tools/train.py \
    --cfg experiments/coco/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_coco_x140.yaml \

Training on Crowdpose trainval dataset

python tools/train.py \
    --cfg experiments/crowdpose/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_crowdpose_x300.yaml \

Using inference demo

python tools/inference_demo.py --cfg experiments/coco/inference_demo_coco.yaml \
    --videoFile ../multi_people.mp4 \
    --outputDir output \
    --visthre 0.3 \
    TEST.MODEL_FILE model/pose_coco/pose_dekr_hrnetw32.pth
python tools/inference_demo.py --cfg experiments/crowdpose/inference_demo_crowdpose.yaml \
    --videoFile ../multi_people.mp4 \
    --outputDir output \
    --visthre 0.3 \
    TEST.MODEL_FILE model/pose_crowdpose/pose_dekr_hrnetw32.pth \

The above command will create a video under output directory and a lot of pose image under output/pose directory.

Scoring net

We use a scoring net, consisting of two fully-connected layers (each followed by a ReLU layer), and a linear prediction layer which aims to learn the OKS score for the corresponding predicted pose. For this scoring net, you can directly use our well-trained model in the model/rescore folder. You can also train your scoring net using your pose estimation model by the following steps:

  1. Generate scoring dataset on train dataset:
python tools/valid.py \
    --cfg experiments/coco/rescore_coco.yaml \
    TEST.MODEL_FILE model/pose_coco/pose_dekr_hrnetw32.pth
python tools/valid.py \
    --cfg experiments/crowdpose/rescore_crowdpose.yaml \
    TEST.MODEL_FILE model/pose_crowdpose/pose_dekr_hrnetw32.pth \
  1. Train the scoring net using the scoring dataset:
python tools/train_scorenet.py \
    --cfg experiment/coco/rescore_coco.yaml
python tools/train_scorenet.py \
    --cfg experiments/crowdpose/rescore_crowdpose.yaml \
  1. Using the well-trained scoring net to improve the performance of your pose estimation model (above 0.6AP).
python tools/valid.py \
    --cfg experiments/coco/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_coco_x140.yaml \
    TEST.MODEL_FILE models/pose_coco/pose_dekr_hrnetw32_coco.pth
python tools/valid.py \
    --cfg experiments/crowdpose/w32/w32_4x_reg03_bs10_512_adam_lr1e-3_crowdpose_x300.yaml \
    TEST.MODEL_FILE models/pose_crowdpose/pose_dekr_hrnetw32_crowdpose.pth \

Acknowledge

Our code is mainly based on HigherHRNet.

Citation

@inproceedings{GengSXZW21,
  title={Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression},
  author={Zigang Geng, Ke Sun, Bin Xiao, Zhaoxiang Zhang, Jingdong Wang},
  booktitle={CVPR},
  year={2021}
}

@inproceedings{SunXLW19,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
  booktitle={CVPR},
  year={2019}
}

@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and 
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and 
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal={TPAMI}
  year={2019}
}
Owner
HRNet
Code for pose estimation is available at https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
HRNet
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 05, 2023
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022